cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A179937 a(n) is the product of the non-palindromic divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 200, 21, 1, 23, 288, 25, 338, 27, 392, 29, 4500, 31, 512, 1, 578, 35, 7776, 37, 722, 507, 8000, 41, 12348, 43, 1, 675, 1058, 47, 221184, 49, 12500, 867, 17576, 53, 26244, 1, 21952, 1083, 1682, 59
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 20, set of non-palindromic divisors is {10, 20}; a(12) = 10*20 = 200.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Select[Divisors[n],!PalindromeQ[#]&],{n,60}] (* Harvey P. Dale, May 15 2023 *)
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A179937(n):
        s=1
        for i in range(1, n+1):
            if n%i==0 and not ispal(i):
                s*=i
        return s # Indranil Ghosh, Feb 10 2017

Formula

a(n) = A007955(n) / A184392(n).

Extensions

More terms from Indranil Ghosh, Feb 10 2017

A184392 a(n) is the product of palindromic divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 10, 11, 144, 1, 14, 15, 64, 1, 324, 1, 40, 21, 484, 1, 1152, 5, 2, 27, 56, 1, 180, 1, 64, 1089, 2, 35, 1296, 1, 2, 3, 320, 1, 252, 1, 85184, 135, 2, 1, 1152, 7, 10, 3, 8, 1, 324, 3025, 448, 3, 2, 1, 720, 1, 2, 189, 64, 5, 18974736, 1, 8, 3, 70, 1, 10368, 1, 2, 15, 8, 5929, 36, 1, 320, 27, 2, 1, 1008, 5, 2, 3, 59969536, 1, 1620, 7, 8, 3, 2, 5, 1152, 1, 14, 970299, 40
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 20, set of palindromic divisors is {1, 2, 4, 5}; a(12) = 1*2*4*5 = 40.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn]]; f[n_]:=Times@@Select[Divisors[n],palQ]; Table[f[n],{n,100}]  (* Harvey P. Dale, Jan 21 2011 *)
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A184392(n):
        s=1
        for i in range(1, n+1):
            if n%i==0 and ispal(i):
                 s*=i
        return s # Indranil Ghosh, Feb 10 2017

Formula

a(n) = A007955(n) / A179937(n).

Extensions

More terms from Harvey P. Dale, Jan 21 2011
Showing 1-2 of 2 results.