cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A093036 Number of palindromic divisors of a(n) sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 66, 132, 264, 792, 1848, 2772, 5544, 13332, 14652, 24024, 26664, 72072, 79992, 186648, 205128, 264264, 559944, 792792, 1333332, 2666664, 7279272, 7999992, 13333320, 14666652, 26690664, 29333304, 80071992, 134666532, 269333064, 807999192
Offset: 1

Views

Author

Jason Earls, May 08 2004

Keywords

Comments

Beginning with 132, it appears that all entries are congruent mod 11*12; 11 to produce palindromic divisors and 12 for numerous divisors. - Robert G. Wilson v, May 14 2004
The number of palindromic divisors of a(n) are 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 19, 20, 21, 22, 24, 27, 28, 29, 30, 33, 37, 39, 43, 50, 52, 54, 57, 59, 61, 68, 72, 80, 90.
Every term is of the form Product_{i>=1} A226732(i)^e(i) for e(i) >= 0. - David A. Corneth, Jan 10 2021

References

  • Jason Earls, "Palindions," Mathematical Bliss, Pleroma Publications, 2009, pages 115-120. ASIN: B002ACVZ6O. [From Jason Earls, Nov 25 2009]

Crossrefs

Programs

  • Mathematica
    palindromicQ[n_, b_:10] := If[FromDigits[Reverse[IntegerDigits[n, b]], b] == n, True, False]; a = 0; Do[c = Count[palindromicQ[ # ] & /@ Divisors[n], True]; If[c > a, Print[n]; a = c], {n, 300000000}] (* Robert G. Wilson v, May 14 2004 with a small modification from Alonso del Arte to permit reuse in many other sequences' programs *)

Extensions

Edited and extended by Robert G. Wilson v, May 14 2004
a(35)-a(36) from Chai Wah Wu, Jan 21 2021

A087997 a(n) is the least number with n palindromic divisors.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 72, 66, 484, 132, 616, 264, 2112, 792, 1848, 2772, 7326, 8712, 5544, 13332, 14652, 24024, 36036, 26664, 87912, 102564, 72072, 79992, 186648, 205128, 360360, 279972, 264264, 666666, 1213212, 879912, 559944, 888888, 792792
Offset: 1

Views

Author

Labos Elemer, Oct 13 2003

Keywords

Examples

			n=24: a(24)=26664 has 32 divisors of which 24 are palindromic numbers: {1, 2, 3, 4, 6, 8, 11, 22, 33, 44, 66, 88, 101, 202, 303, 404, 606, 808, 1111, 2222, 3333, 4444, 6666, 8888}.
Some solutions are palindromic (like 2112), some are not (like 132).
		

Crossrefs

Cf. A087990.

Programs

Formula

a(n)=Min{x; A087990[x]=n}

Extensions

More terms from Ray Chandler, Oct 17 2003

A087991 Number of non-palindromic divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 0, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 0, 2, 2, 1, 4, 1, 3, 2, 3, 1, 3, 0, 3, 2, 2, 1, 6, 1, 2, 2, 3, 2, 0, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 0, 4, 1, 5, 2, 2, 1, 6, 2, 2, 2, 0, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 0, 5, 0, 4, 1, 4, 4
Offset: 1

Views

Author

Labos Elemer, Oct 08 2003

Keywords

Examples

			For n = 132: divisors = {1,2,3,4,6,11,12,22,33,44,66,132}, revdivisors = {1,2,3,4,6,11,21,22,33,44,66,231}, two of the 12 divisors of n are non-palindromic: {21,132}, so a(132) = 2.
		

Crossrefs

Programs

Formula

a(n) = A000005(n) - A087990(n).
Sum_{k=1..n} a(k) ~ n * (log(n) + c), where c = 2*A001620 - 1 - A118031 = -3.2158519... . - Amiram Eldar, Apr 17 2025

A088000 a(n) is the sum of the palindromic divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 16, 1, 10, 9, 15, 1, 21, 1, 12, 11, 36, 1, 24, 6, 3, 13, 14, 1, 17, 1, 15, 48, 3, 13, 25, 1, 3, 4, 20, 1, 19, 1, 84, 18, 3, 1, 24, 8, 8, 4, 7, 1, 21, 72, 22, 4, 3, 1, 21, 1, 3, 20, 15, 6, 144, 1, 7, 4, 15, 1, 33, 1, 3, 9, 7, 96, 12, 1, 20, 13, 3, 1, 23, 6, 3
Offset: 1

Views

Author

Labos Elemer, Oct 14 2003

Keywords

Examples

			n=14: a(14)=1+2+7=10;
n=101: a(101)=1+101=102;
		

Crossrefs

Cf. A062687 (all divisors are palindromic), A087990 (number of palindromic divisors).

Programs

  • Maple
    A088000 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if isA002113(d) then
                a := a+d ;
            end if;
        end do;
        a ;
    end proc:
    seq(A088000(n),n=1..100) ; # R. J. Mathar, Sep 09 2015
  • Mathematica
    Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 86}] (* Jayanta Basu, Aug 12 2013 *)
  • PARI
    a(n) = sumdiv(n, d, my(dd=digits(d)); if (Vecrev(dd) == dd, d)); \\ Michel Marcus, Apr 06 2020
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A088000(n):
        s=0
        for i in range(1, n+1):
            if n%i==0 and ispal(i):
                 s+=i
        return s
    print([A088000(n) for n in range(1,30)]) # Indranil Ghosh, Feb 10 2017
    

A356018 a(n) is the number of evil divisors (A001969) of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 0, 2, 2, 0, 3, 0, 0, 3, 0, 1, 4, 0, 3, 1, 0, 1, 4, 1, 0, 3, 0, 1, 6, 0, 0, 2, 2, 1, 6, 0, 0, 2, 4, 0, 2, 1, 0, 5, 2, 0, 5, 0, 2, 3, 0, 1, 6, 1, 0, 2, 2, 0, 9, 0, 0, 3, 0, 2, 4, 0, 3, 2, 2, 1, 8, 0, 0, 4, 0, 1, 4, 0, 5, 3, 0, 1, 3, 3, 2
Offset: 1

Views

Author

Bernard Schott, Jul 23 2022

Keywords

Comments

a(n) = 0 iff n is in A093696.

Examples

			12 has 6 divisors: {1, 2, 3, 4, 6, 12} of which three {3, 6, 12} have an even number of 1's in their binary expansion with 11, 110 and 11100 respectively; hence a(12) = 3.
		

Crossrefs

Cf. A000005, A001969, A093688, A093696 (location of 0s), A227872, A356019, A356020.
Similar sequences: A083230, A087990, A087991, A332268, A355302.

Programs

  • Maple
    A356018 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if isA001969(d) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A356018(n),n=1..200) ;  # R. J. Mathar, Aug 07 2022
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, EvenQ[DigitCount[#, 2, 1]] &]; Array[a, 100] (* Amiram Eldar, Jul 23 2022 *)
  • PARI
    a(n) = my(v = valuation(n, 2)); n>>=v; d=divisors(n); sum(i=1, #d, bitand(hammingweight(d[i]), 1) == 0) * (v+1) \\ David A. Corneth, Jul 23 2022
  • Python
    from sympy import divisors
    def c(n): return bin(n).count("1")&1 == 0
    def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Jul 23 2022
    

Formula

a(n) = A000005(n) - A227872(n).

Extensions

More terms from David A. Corneth, Jul 23 2022

A087999 a(n) is the LCM of palindromic divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 14, 15, 8, 1, 18, 1, 20, 21, 22, 1, 24, 5, 2, 9, 28, 1, 30, 1, 8, 33, 2, 35, 36, 1, 2, 3, 40, 1, 42, 1, 44, 45, 2, 1, 24, 7, 10, 3, 4, 1, 18, 55, 56, 3, 2, 1, 60, 1, 2, 63, 8, 5, 66, 1, 4, 3, 70, 1, 72, 1, 2, 15, 4, 77, 6, 1, 40, 9, 2, 1, 84, 5, 2, 3, 88
Offset: 1

Views

Author

Labos Elemer, Oct 14 2003

Keywords

Comments

Sequence is not multiplicative. For example, a(141) = 141 != a(3)*a(47) = 3 * 1. - Franklin T. Adams-Watters, Oct 27 2006

Examples

			n=252: a(252)=252=n,since palindromic divisors = {1,2,3,4,6,7,9,252};
n=255: a(255)=15<n, palind.div ={1,3,5}.
		

Crossrefs

Cf. A087990.

Programs

  • Mathematica
    Table[LCM @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 88}] (* Jayanta Basu, Aug 12 2013 *)
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d);
    a(n) = lcm(select(x->ispal(x), divisors(n))); \\ Michel Marcus, Mar 27 2020

Formula

a(n)=1 for non-palindromic primes like 13.

A355699 a(n) is the smallest number that has exactly n repdigit divisors.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 72, 66, 666, 132, 1332, 264, 2664, 792, 13320, 3960, 14652, 26664, 48840, 29304, 79992, 341880, 146520, 399960, 1333332, 1025640, 2799720, 8879112, 2666664, 18666648, 7999992, 44395560, 13333320, 93333240, 39999960, 279999720, 269333064
Offset: 1

Views

Author

Bernard Schott, Jul 14 2022

Keywords

Examples

			72 has 12 divisors: {1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}, only {1, 2, 3, 4, 6, 8, 9} are repdigits; no positive integer smaller than 72 has seven repdigit divisors, hence a(7) = 72.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, Length[Union[IntegerDigits[#]]] == 1 &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[24, 10^6] (* Amiram Eldar, Jul 15 2022 *)
  • PARI
    isrep(n) = 1==#Set(digits(n)); \\ A010785
    a(n) = my(k=1); while (sumdiv(k, d, isrep(d)) != n, k++); k; \\ Michel Marcus, Jul 15 2022
    
  • PARI
    \\ See PARI link. - David A. Corneth, Jul 26 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): return len(set(str(n))) == 1
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen():
        n, adict = 1, dict()
        for k in count(1):
            fk = f(k)
            if fk not in adict: adict[fk] = k
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 21))) # Michael S. Branicky, Jul 26 2022

Extensions

a(9)-a(35) from Michael S. Branicky, Jul 14 2022
a(36)-a(37) from Michael S. Branicky, Jul 15 2022

A334391 Numbers whose only palindromic divisor is 1.

Original entry on oeis.org

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 157, 163, 167, 169, 173, 179, 193, 197, 199, 211, 221, 223, 227, 229, 233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 299, 307
Offset: 1

Views

Author

Bernard Schott, Apr 26 2020

Keywords

Comments

Equivalent: Numbers such that the LCM of their palindromic divisors (A087999) is 1, or,
Numbers such that the number of palindromic divisors (A087990) is 1.
All terms are odd.
The 1st family consists of non-palindromic primes that form the subsequence A334321.
The 2nd family consists of {p^k, p prime, k >= 2} such that p^j for 1 <= j <= k is not a palindrome {169 = 13^2, 289 = 17^2, 361 = 19^2, ..., 2197 = 13^3, ...} (see examples).
The 3rd family consists of products p_1^q_1 * ... * p_k^q_k with k >= 2, all of whose divisors are nonpalindromic {221 = 13 * 27, 247 = 13 * 19, 299 = 13 * 23, 377 = 13 * 29, 391 = 17 * 23, 403 = 13 * 31, 481 = 13 * 37, ...}.
Also, equivalent: numbers all of whose divisors > 1 are nonpalindromic (A029742). - Bernard Schott, Jul 14 2022

Examples

			49 = 7^2, the divisor 7 is a palindrome so 49 is not a term.
169 = 13^2, divisors of 169 are {1, 13, 169} and 169 is a term.
391 = 17*23, divisors of 391 are {1,17,23,391} and 391 is a term.
307^2 = 94249 that is palindrome, so 94249 is not a term.
		

Crossrefs

A334321 is a subsequence.

Programs

  • Maple
    notpali:= proc(n) local L;
      L:= convert(n,base,10);
      L <> ListTools:-Reverse(L)
    end proc:
    filter:= proc(n) option remember; andmap(notpali,numtheory:-divisors(n) minus {1}) end proc:
    select(filter, [seq(i,i=1..400,2)]); # Robert Israel, Apr 28 2020
  • Mathematica
    Select[Range[300], !AnyTrue[Rest @ Divisors[#], PalindromeQ] &] (* Amiram Eldar, Apr 26 2020 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d);
    isok(n) = fordiv(n, d, if (d>1 && ispal(d), return(0))); return(1); \\ Michel Marcus, Apr 26 2020
    
  • Python
    from sympy.ntheory import divisors, is_palindromic
    def ok(n): return not any(is_palindromic(d) for d in divisors(n)[1:])
    print(list(filter(ok, range(1, 308, 2)))) # Michael S. Branicky, May 08 2021

Formula

A087990(a(n)) = 1.
A087999(a(n)) = 1.

A335037 a(n) is the number of divisors of n that are themselves divisible by the product of their digits.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 6, 1, 3, 4, 4, 1, 5, 1, 4, 3, 3, 1, 8, 2, 2, 3, 4, 1, 6, 1, 4, 3, 2, 3, 8, 1, 2, 2, 5, 1, 5, 1, 4, 5, 2, 1, 8, 2, 3, 2, 3, 1, 5, 3, 5, 2, 2, 1, 8, 1, 2, 4, 4, 2, 5, 1, 3, 2, 4, 1, 10, 1, 2, 4, 3, 3, 4, 1, 5, 3, 2, 1, 7, 2, 2, 2, 5
Offset: 1

Views

Author

Bernard Schott, Jun 03 2020

Keywords

Comments

Inspired by A332268.
A number that is divisible by the product of its digits is called Zuckerman number (A007602); e.g., 24 is a Zuckerman number because it is divisible by 2*4=8 (see links).
a(n) = 1 iff n = 1 or n is prime not repunit >= 13.
a(n) = 2 iff n is prime = 2, 3, 5, 7 or a prime repunit.
Numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 111111111111111111111 (repunit with 19 times 1's) have all divisors Zuckerman numbers. The sequence of numbers with all Zuckerman divisors is infinite iff there are infinitely many repunit primes (see A004023).

Examples

			For n = 4, the divisors are 1, 2, 4 and they are all Zuckerman numbers, so a(4) = 3.
For n = 14, the divisors are 1, 2, 7 and 14. Only 1, 2 and 7 are Zuckerman numbers, so a(14) = 3.
		

Crossrefs

Similar with: A001227 (odd divisors), A087990 (palindromic divisors), A087991 (non-palindromic divisors), A242627 (divisors < 10), A332268 (Niven divisors).

Programs

  • Mathematica
    zuckQ[n_] := (prodig = Times @@ IntegerDigits[n]) > 0&& Divisible[n, prodig]; a[n_] := Count[Divisors[n], ?(zuckQ[#] &)]; Array[a, 100] (* _Amiram Eldar, Jun 03 2020 *)
  • PARI
    iszu(n) = my(p=vecprod(digits(n))); p && !(n % p);
    a(n) = sumdiv(n, d, iszu(d)); \\ Michel Marcus, Jun 03 2020

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=1} 1/A007602(n) = 3.26046... . - Amiram Eldar, Jan 01 2024

A355770 a(n) is the number of terms of A333369 that divide n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 4, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 4, 2, 1, 2, 2, 4, 3, 2, 2, 4, 2, 1, 3, 1, 3, 5, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 1, 2, 4, 1, 2, 4, 1, 3, 4, 1, 2, 2, 4, 2, 3, 2, 2, 5, 2, 2, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2
Offset: 1

Views

Author

Bernard Schott, Jul 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Jul 16 2022 *)
  • PARI
    issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
    a(n) = sumdiv(n, d, issimber(d)); \\ Michel Marcus, Jul 18 2022
  • Python
    from sympy import divisors
    def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
    def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jul 16 2022
    

Extensions

More terms from Michael S. Branicky, Jul 16 2022
Showing 1-10 of 18 results. Next