cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355695 a(n) is the smallest number that has exactly n nonpalindromic divisors (A029742).

Original entry on oeis.org

1, 10, 20, 30, 48, 72, 60, 140, 144, 120, 210, 180, 300, 240, 560, 504, 360, 420, 780, 1764, 900, 960, 720, 1200, 840, 1560, 2640, 1260, 1440, 2400, 3900, 3024, 1680, 3120, 2880, 4800, 7056, 3600, 2520, 3780, 3360, 5460, 6480, 16848, 6300, 8820, 7200, 9240, 6720, 12480, 5040
Offset: 0

Views

Author

Bernard Schott, Jul 14 2022

Keywords

Examples

			48 has 10 divisors: {1, 2, 3, 4, 6, 8, 12, 16, 24, 48}, only 12, 16, 24 and 48 are nonpalindromic; no positive integer smaller than 48 has four nonpalindromic divisors, hence a(4) = 48.
		

Crossrefs

Similar sequences: A087997, A333456, A355303, A355594.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, ! PalindromeQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[50, 10^5] (* Amiram Eldar, Jul 14 2022 *)
  • PARI
    isnp(n) = my(d=digits(n)); d!=Vecrev(d); \\ A029742
    a(n) = my(k=1); while (sumdiv(k, d, isnp(d)) != n, k++); k; \\ Michel Marcus, Jul 14 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): s = str(n); return s != s[::-1]
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen():
        n, adict = 0, dict()
        for k in count(1):
            fk = f(k)
            if fk not in adict: adict[fk] = k
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 51))) # Michael S. Branicky, Jul 27 2022

Extensions

More terms from Michel Marcus, Jul 14 2022

A183106 Numbers k such that sum of palindromic divisors of k (A088000(k)) is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 13, 15, 17, 19, 21, 23, 25, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 103, 106, 107, 109, 112, 113, 115, 116, 118, 119
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Examples

			a(12) = 21; palindromic divisors of 21: 1, 3, 7; their sum is 11 (palindromic number).
		

Crossrefs

Subsequences: A334321, A334391.

Programs

  • Maple
    isA183106 := proc(n)
        isA002113(A088000(n)) ;
    end proc:
    for n from 1 to 100 do
        if isA183106(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 09 2015
  • Mathematica
    q[k_] := PalindromeQ[DivisorSum[k, # &, PalindromeQ[#] &]]; Select[Range[120], q] (* Amiram Eldar, Aug 08 2024 *)

Formula

A088000(a(n)) = A183107(n).

Extensions

More terms from Amiram Eldar, Aug 08 2024

A334392 Numbers m such that the LCM of their palindromic divisors is neither 1 nor m.

Original entry on oeis.org

16, 25, 26, 27, 32, 34, 38, 39, 46, 48, 49, 50, 51, 52, 54, 57, 58, 62, 64, 65, 68, 69, 74, 75, 76, 78, 80, 81, 82, 85, 86, 87, 91, 92, 93, 94, 95, 96, 98, 100, 102, 104, 106, 108, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 128, 129, 130, 133, 134
Offset: 1

Views

Author

Bernard Schott, May 04 2020

Keywords

Comments

A334139, A334391 and this sequence form a partition of the set of positive integers N* (A000027).
The integers {2^k, k >= 4, 2^k non-palindrome} form a subsequence whose first few terms are : 16, 32, 64, 128, ...

Examples

			50 has 3 palindromic divisors {1, 2, 5} then A087999(50) = 10 and 50 is a term.
		

Crossrefs

Cf. A334391 [LCM(palindromic divisors of m) = 1], A334139 [LCM(palindromic divisors of m) = m], this sequence [LCM(palindromic divisors of m) != 1 and != m].

Programs

  • Mathematica
    Select[Range[125], !MemberQ[{1, #}, LCM @@ Select[Divisors[#], PalindromeQ]] &] (* Amiram Eldar, May 05 2020 *)
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d);
    isok(m) = my(d=divisors(m), lcmpd = lcm(select(x->ispal(x), d))); (lcmpd != 1) && (lcmpd != m); \\ Michel Marcus, May 05 2020

A339624 Perfect powers p^k, k >= 2 of palindromic primes p when p^k is not a palindrome.

Original entry on oeis.org

16, 25, 27, 32, 49, 64, 81, 125, 128, 243, 256, 512, 625, 729, 1024, 2048, 2187, 2401, 3125, 4096, 6561, 8192, 15625, 16384, 16807, 17161, 19683, 22801, 32761, 32768, 36481, 59049, 65536, 78125, 97969, 117649, 124609, 131072, 139129, 146689, 161051, 177147, 262144
Offset: 1

Views

Author

Bernard Schott, Dec 10 2020

Keywords

Comments

Equivalently: numbers m with only one prime factor such that the LCM of their palindromic divisors is neither 1 nor m: subsequence of A334392.
G. J. Simmons conjectured there are no palindromes of form n^k for k >= 5 (and n > 1) (see Simmons p. 98). According to this conjecture, these perfect powers are terms: {2^k, k>=4}, {3^k, k>=3}, {5^k, k>=2}, {7^k, k=2 and k>=4}, {11^k, k>=5}, {101^k, k>= 5}, {131^k, k>=2}, ...
From a(1) = 16 to a(17) = 2187, the data is the same as A056781(10) until A056781(26), then a(18) = 2401 and A056781(27) = 4096.

Examples

			5^2 = 25, 2^6 = 64, 3^4 = 81 are terms.
7^2 = 49 is a term, 7^3 = 343 is not a term, and 7^4 = 2401 is a term.
101^2 = 10201 and 11^4 = 14641 are not terms.
		

References

  • Murray S. Klamkin, Problems in applied mathematics: selections from SIAM review, (1990), p. 520.

Crossrefs

Intersection of A025475 and A334392.
Subsequences: A000079 \ {1,2,4,8}, A000244 \ {1,3,9}, A000351 \ {1,5}, A000420 \ {1,7,343}, A001020 \ {1,11,121,1331,14641}, A096884 \ {1,101, 10201, 1030301, 104060401}.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, Length[f] == 1 && f[[1, 2]] > 1 && PalindromeQ[f[[1, 1]]]]; Select[Range[10^5], !PalindromeQ[#] && q[#] &] (* Amiram Eldar, Dec 10 2020 *)
  • PARI
    ispal(n) = my(d=digits(n)); Vecrev(d)==d;
    isok(k) = my(p); isprimepower(k, &p) && isprime(p) && ispal(p) &&!ispal(k); \\ Michel Marcus, Dec 10 2020

Extensions

More terms from Amiram Eldar, Dec 10 2020
Showing 1-4 of 4 results.