A087997 a(n) is the least number with n palindromic divisors.
1, 2, 4, 6, 12, 24, 72, 66, 484, 132, 616, 264, 2112, 792, 1848, 2772, 7326, 8712, 5544, 13332, 14652, 24024, 36036, 26664, 87912, 102564, 72072, 79992, 186648, 205128, 360360, 279972, 264264, 666666, 1213212, 879912, 559944, 888888, 792792
Offset: 1
Examples
n=24: a(24)=26664 has 32 divisors of which 24 are palindromic numbers: {1, 2, 3, 4, 6, 8, 11, 22, 33, 44, 66, 88, 101, 202, 303, 404, 606, 808, 1111, 2222, 3333, 4444, 6666, 8888}. Some solutions are palindromic (like 2112), some are not (like 132).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..150
Crossrefs
Cf. A087990.
Programs
-
Mathematica
t = Table[Count[Divisors[k], ?(Reverse[x = IntegerDigits[#]] == x &)], {k, 2,15*10^5, 2}]; Join[{1}, Table[i = 1; While[t[[i]] != k, i++]; 2 i, {k, 2, 39}]] (* _Jayanta Basu, Aug 12 2013 *) Module[{pds=Table[{n,Count[Divisors[n],?PalindromeQ]},{n,1214000}]},Table[ SelectFirst[pds,#[[2]]==k&],{k,39}]][[All,1]] (* _Harvey P. Dale, Dec 17 2021 *)
Formula
a(n)=Min{x; A087990[x]=n}
Extensions
More terms from Ray Chandler, Oct 17 2003