A087999 a(n) is the LCM of palindromic divisors of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 14, 15, 8, 1, 18, 1, 20, 21, 22, 1, 24, 5, 2, 9, 28, 1, 30, 1, 8, 33, 2, 35, 36, 1, 2, 3, 40, 1, 42, 1, 44, 45, 2, 1, 24, 7, 10, 3, 4, 1, 18, 55, 56, 3, 2, 1, 60, 1, 2, 63, 8, 5, 66, 1, 4, 3, 70, 1, 72, 1, 2, 15, 4, 77, 6, 1, 40, 9, 2, 1, 84, 5, 2, 3, 88
Offset: 1
Examples
n=252: a(252)=252=n,since palindromic divisors = {1,2,3,4,6,7,9,252}; n=255: a(255)=15<n, palind.div ={1,3,5}.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..50000
Crossrefs
Cf. A087990.
Programs
-
Mathematica
Table[LCM @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 88}] (* Jayanta Basu, Aug 12 2013 *)
-
PARI
ispal(x) = my(d=digits(x)); d == Vecrev(d); a(n) = lcm(select(x->ispal(x), divisors(n))); \\ Michel Marcus, Mar 27 2020
Formula
a(n)=1 for non-palindromic primes like 13.
Comments