cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088018 Number of twin-prime pairs between n and 2n (inclusive).

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 6, 6, 6, 6
Offset: 1

Views

Author

T. D. Noe, Sep 18 2003, Feb 17 2011

Keywords

Comments

To be counted, both members of the twin-prime pair must be between n and 2n, inclusive. It appears that a(n) > 0 for all n > 6. However, it has not been proved that there are an infinite number of twin primes.
Same as the number of lower twin primes between n-1 and 2(n-1), exclusive. If the twin prime conjecture is true, there are at least n lower twin primes between x/2 and x for all x >= A186312(n).

Crossrefs

Cf. A035250 (number of primes between n and 2n), A088019 (number of twin primes between n and 2n).

Programs

  • Mathematica
    nn=100; p=Select[Prime[Range[PrimePi[2*nn]]], PrimeQ[#+2] &]; t=Table[0, {nn}]; Do[t[[Span[Ceiling[i/2], Min[nn,i-1]]]]++, {i, p}]; Prepend[t,0]
    Table[Total[Length /@ Split[Select[Range[n, 2 n], PrimeQ], #2 - #1 == 2 &] - 1], {n, 105}] (* Jayanta Basu, Aug 12 2013 *)