cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088019 Number of twin primes between n and 2n (inclusive).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 2, 3, 4, 4, 3, 3, 2, 3, 4, 4, 3, 3, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 8, 8, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 7, 7, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 11, 12, 12, 13, 14
Offset: 1

Views

Author

T. D. Noe, Sep 18 2003

Keywords

Comments

Here a twin prime is counted even if only one member of the twin-prime pair is between n and 2n, inclusive. Note that this sequence is very close to 2*A088018. It appears that a(n) > 0 for all n > 1. However, it has not been proved that there are an infinite number of twin primes.

Crossrefs

Cf. A035250 (number of primes between n and 2n), A088018 (number of twin-prime pairs between n and 2n).

Programs

  • Mathematica
    pl=Prime[Range[PrimePi[20000]]]; twl={}; Do[If[pl[[i-1]]+2==pl[[i]], twl=Join[twl, {pl[[i-1]], pl[[i]]}]], {i, 2, Length[pl]}]; twl=Union[twl]; i1=1; i2=1; nMin=(twl[[1]]-1)/2; nMax=(twl[[ -1]]+1)/2; Join[Table[0, {nMin-1}], Table[While[twl[[i1]]