cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088022 a(n) = floor(sum_{k>=0} k^n /(k!)^3); related to generalized Bell numbers.

Original entry on oeis.org

2, 1, 1, 2, 3, 6, 12, 28, 68, 176, 484, 1409, 4334, 14002, 47357, 167157, 614297, 2345730, 9290084, 38092233, 161436136, 706061825, 3182452003, 14764717643, 70429572474, 345075959701, 1734987079149, 8943648710357, 47228775626154
Offset: 0

Views

Author

Paul D. Hanna, Sep 19 2003

Keywords

Examples

			a(8) = 68 = floor(17*2.1297 + 12*1.2641 + 11*1.5428) = floor(68.3463).
		

Crossrefs

Formula

B(n) := sum_{k>=0} k^n/(k!)^3 = A000996(n)*B(0) + A000997(n)*B(1) + A000998(n)*B(2) where B(0)=2.129702548983..., B(1)=1.264181150389..., B(2)=1.542838638501...; observe that these shift 3 places left under binomial transform: A000996={1, 0, 0, 1, 1, 1, 2, 6, 17, 44, 112, 304, 918, ...}, A000997={0, 1, 0, 0, 1, 2, 3, 5, 12, 36, 110, 326, 963, ...}, A000998={0, 0, 1, 0, 0, 1, 3, 6, 11, 24, 69, 227, 753, ...}; here A000998 is offset with 5 leading terms: {0, 0, 1, 0, 0}.