A088153 a(n) is the value of the n-th digit in the decimal representation of n^n.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 8, 0, 1, 7, 4, 2, 6, 1, 6, 7, 7, 9, 6, 7, 2, 3, 5, 2, 9, 3, 9, 7, 1, 9, 7, 7, 4, 9, 6, 2, 2, 8, 1, 5, 4, 3, 0, 7, 5, 4, 7, 5, 9, 1, 2, 5, 3, 5, 6, 9, 4, 0, 4, 1, 2, 4, 6, 5, 9, 9, 0, 1, 4, 9, 1, 6, 7, 1, 6, 7, 7, 0, 6, 6, 5, 9, 0, 0, 1, 7, 0, 6, 3, 7, 5, 2, 6, 2, 0, 8
Offset: 0
Examples
For n=16, 16^16 = 18446744073709551616, a(16)=4. a(0)=1, a(k)=0 for 0 < k < 10 and a(10)=1.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Decimal
Programs
-
Maple
f:= proc(n) local x, L; x:= n &^ n mod 10^(n+1); floor(x/10^n) end proc: f(0):= 1: map(f, [$0..101]); # Robert Israel, Dec 02 2022
Formula
a(n) = floor(n^n / 10^n) mod 10.
Comments