A088163 Numbers for which rotating one binary place to the right less rotating one binary place to the left is equal to zero.
0, 1, 2, 3, 7, 10, 15, 31, 42, 63, 127, 170, 255, 511, 682, 1023, 2047, 2730, 4095, 8191, 10922, 16383, 32767, 43690, 65535, 131071, 174762, 262143, 524287, 699050, 1048575, 2097151, 2796202, 4194303, 8388607, 11184810, 16777215, 33554431, 44739242, 67108863
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,5,0,0,-4).
Programs
-
Mathematica
f[n_] := FromDigits[ RotateRight[ IntegerDigits[n, 2]], 2] - FromDigits[ RotateLeft[ IntegerDigits[n, 2]], 2]; Select[ Range[33560000], f[ # ] == 0 &] (* Or *) Union[ Join[ Table[2^n - 1, {n, 0, 25}], Table[ Ceiling[2(2^n - 1)/3], {n, 2, 24, 2}]]] LinearRecurrence[{0,0,5,0,0,-4},{0,1,2,3,7,10},40] (* Harvey P. Dale, Feb 20 2022 *)
-
PARI
concat(0, Vec(x*(1+x)*(1+x+2*x^2) / ((1-x)*(1+x+x^2)*(1-4*x^3)) + O(x^50))) \\ Colin Barker, May 14 2016
Formula
From Colin Barker, May 14 2016: (Start)
a(n) = 5*a(n-3)-4*a(n-6) for n>5.
G.f.: x*(1+x)*(1+x+2*x^2) / ((1-x)*(1+x+x^2)*(1-4*x^3)).
(End)
Comments