cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088193 Prime numbers where the sequence of largest quadratic residues modulo the primes (A088190) is non-monotonic.

Original entry on oeis.org

3, 7, 31, 71, 103, 151, 199, 239, 271, 311, 359, 463, 599, 719, 823, 839, 911, 1063, 1231, 1279, 1303, 1439, 1559, 1871, 1879, 1951, 1999, 2143, 2239, 2311, 2351, 2383, 2399, 2551, 2711, 2791, 3191, 3391, 3463, 3559, 3583, 3823, 3911, 3919, 4079, 4159
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003

Keywords

Comments

From the second term on, these primes are always ==7 mod 8. (Tested for the first 20000 primes)
From Robert Israel, Oct 31 2024: (Start)
This is true because if prime(n) == 1 mod 4, A088190(n) = prime(n) - 1 while if prime(n) == 3 mod 8, A088190(n) = prime(n) - 2. In either case, A088190(n) > prime(n-1) - 1 >= A088190(n-1).
Primes prime(n) such that A088190(n) <= A088190(n-1). (End)

Crossrefs

Programs

  • Maple
    lqr:= proc(p) local k;
      for k from p-1 by -1 do if numtheory:-quadres(k,p) = 1 then return k fi od:
    end proc:
    p:= 2: v:= lqr(2): R:= NULL: count:= 0:
    while count < 100 do
      q:= p; vq:= v; p:= nextprime(p); v:= lqr(p);
      if v <= vq then R:= R,p; count:= count+1;
      fi
    od:
    R; # Robert Israel, Oct 31 2024
  • PARI
    qrp_p_nm(to)= {/* The primes where the sequence of the largest QR modulo the primes is non-monotonic */ local(m,k=1,p,v=[]); for(i=2,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m