A088193 Prime numbers where the sequence of largest quadratic residues modulo the primes (A088190) is non-monotonic.
3, 7, 31, 71, 103, 151, 199, 239, 271, 311, 359, 463, 599, 719, 823, 839, 911, 1063, 1231, 1279, 1303, 1439, 1559, 1871, 1879, 1951, 1999, 2143, 2239, 2311, 2351, 2383, 2399, 2551, 2711, 2791, 3191, 3391, 3463, 3559, 3583, 3823, 3911, 3919, 4079, 4159
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
lqr:= proc(p) local k; for k from p-1 by -1 do if numtheory:-quadres(k,p) = 1 then return k fi od: end proc: p:= 2: v:= lqr(2): R:= NULL: count:= 0: while count < 100 do q:= p; vq:= v; p:= nextprime(p); v:= lqr(p); if v <= vq then R:= R,p; count:= count+1; fi od: R; # Robert Israel, Oct 31 2024
-
PARI
qrp_p_nm(to)= {/* The primes where the sequence of the largest QR modulo the primes is non-monotonic */ local(m,k=1,p,v=[]); for(i=2,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m
Comments