cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088195 Distance (A088192) of primes from the largest quadratic residues modulo the primes (A088190), where the latter is non-monotonic.

Original entry on oeis.org

3, 3, 3, 7, 3, 3, 3, 7, 3, 11, 7, 3, 7, 11, 3, 11, 7, 3, 3, 3, 3, 7, 17, 7, 3, 3, 3, 3, 3, 3, 13, 3, 11, 3, 7, 3, 11, 3, 3, 3, 3, 3, 13, 3, 11, 3, 3, 3, 3, 3, 11, 7, 11, 13, 3, 7, 7, 11, 7, 3, 3, 11, 19, 3, 11, 3, 3, 11, 17, 3, 11, 3, 7, 3, 13, 3, 3, 3, 3, 11, 11, 3, 3, 3, 3, 13, 19, 3, 3, 3, 7, 11
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003

Keywords

Comments

The values are some odd primes, but never 5. The maximum value increases very slowly, it only reaches 31 for the first 20000 primes.
It is conjectured that if we denote the members of A088194 by D(n) and the member of this sequence by M(n) then if D(n)=-1 then M(n)=7, while if M(n)=3 then D(n)=0.
The values are odd primes, but never 5 (the primality is provable). The maximum value increases very slowly: it only reaches 43 for the first 10^5 primes.

Crossrefs

Programs

  • PARI
    qrp_pm_nm(to)= {/* The distance of LQR from the primes where the sequence of the largest QR modulo the primes is non-monotonic */ local(m,k=1,p,v=[]); for(i=2,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m