A088190 Largest quadratic residue modulo prime(n).
1, 1, 4, 4, 9, 12, 16, 17, 18, 28, 28, 36, 40, 41, 42, 52, 57, 60, 65, 64, 72, 76, 81, 88, 96, 100, 100, 105, 108, 112, 124, 129, 136, 137, 148, 148, 156, 161, 162, 172, 177, 180, 184, 192, 196, 196, 209, 220, 225, 228, 232, 232, 240, 249, 256, 258, 268, 268, 276
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- F. Adorjan, The sequence of largest quadratic residues modulo the primes.
Crossrefs
Programs
-
Maple
lqr:= proc(p) local k; for k from p-1 by -1 do if numtheory:-quadres(k,p) = 1 then return k fi od: end proc: seq(lqr(ithprime(i)),i=1..100); # Robert Israel, Oct 31 2024
-
Mathematica
a[n_] := With[{p = Prime[n]}, SelectFirst[Range[p - 1, 1, -1], JacobiSymbol[#, p] == 1&]]; Array[a, 100] (* Jean-François Alcover, Feb 16 2018 *)
-
PARI
qrp(fr,to)= {/* Sequence of the largest QR modulo the primes */ local(m,p,v=[]); for(i=fr,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m
Formula
a(n) = max(r, r==j^2 mod p(n)|j=1, 2, ...(p(n)-1)/2)
Comments