cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A209819 Triangle of coefficients of polynomials u(n,x) jointly generated with A209820; see the Formula section.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 5, 17, 17, 1, 5, 21, 53, 41, 1, 5, 21, 81, 157, 99, 1, 5, 21, 89, 289, 449, 239, 1, 5, 21, 89, 361, 973, 1253, 577, 1, 5, 21, 89, 377, 1389, 3133, 3433, 1393, 1, 5, 21, 89, 377, 1565, 5085, 9745, 9273, 3363, 1, 5, 21, 89, 377, 1597, 6285
Offset: 1

Views

Author

Clark Kimberling, Mar 23 2012

Keywords

Comments

Let T(n,k) be the general term.
T(n,n): A001333
T(n,n-1): A088210
Row sums: A003561
Alternating row sums: 1,-2,3,-4,5,-6,7,-8,...
Limiting row: F(2), F(5),F(8),...where F=A000045 (Fibonacci numbers)
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...3
1...5...7
1...5...17...17
1...5...21...53...41
First three polynomials u(n,x): 1, 1 + 3x, 1 + 5x + 7x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209819 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209820 *)

Formula

u(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A088211 Denominators of convergents of the continued fraction with the n+1 partial quotients: [2;2,2,...(n 2's)...,2,n+1], starting with [1], [2;2], [2;2,3], [2;2,2,4], ...

Original entry on oeis.org

1, 2, 7, 22, 65, 186, 519, 1422, 3841, 10258, 27143, 71270, 185921, 482314, 1245191, 3201182, 8199169, 20931234, 53276679, 135246390, 342508097, 865501658, 2182728199, 5494630702, 13808551681, 34648530866, 86815769095, 217237177222
Offset: 0

Views

Author

Paul D. Hanna, Sep 23 2003

Keywords

Comments

Numerators are A088210.

Examples

			A088210(3)/a(3) = [2;2,2,4] = 53/22.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -2, -4, -1}, {1, 2, 7, 22}, 30] (* Paolo Xausa, Feb 08 2024 *)

Formula

G.f.: (1-2*x+x^2+2*x^3)/(1-2*x-x^2)^2.
a(n) = A000129(n+1) + (n-1)*A000129(n), where A000129 are the Pell numbers. [Corrected by Paolo Xausa, Feb 08 2024]
Showing 1-2 of 2 results.