A088247 Orders of proper semifields.
16, 27, 32, 64, 81, 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1331, 2048, 2187, 2197, 2401, 3125, 4096, 4913, 6561, 6859, 8192, 12167, 14641, 15625, 16384, 16807, 19683, 24389, 28561, 29791, 32768, 50653, 59049, 65536, 68921, 78125, 79507
Offset: 1
References
- D. E. Knuth, "Finite Semifields and Projective Planes", Selected Papers on Discrete Mathematics, Center for the Study of Language and Information, Leland Stanford Junior University, CA, 2003, p. 335.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Hauke Klein, Semifields, provides definition, context, links, theorem.
- D. E. Knuth, Finite semifields and projective planes, Caltech PhD dissertation, library online PDF version.
Programs
-
Mathematica
max = 10^5; Clear[f]; f[2] = {}; p = Prime /@ Range[PrimePi[max^(1/3) // N]]; f[k_] := f[k] = Select[Union[f[k-1], p^k], # < max &]; f[k = 3]; While[f[k] != f[k-1], k++]; f[k] // Rest (* Jean-François Alcover, Sep 26 2013 *) Select[ Range[ 9, 80000 ], PrimeOmega@# > 2 && Mod[ #, # - EulerPhi@# ] == 0 & ] (* or *) mx = 80000; Rest@ Sort@ Flatten@ Table[ Prime[n]^e, {n, PrimePi[ mx^(1/3)]}, {e, 3, Log[ Prime@ n, mx]}] (* Robert G. Wilson v, Mar 11 2014 *)
-
PARI
is(n)=isprimepower(n)>2 && n>8 \\ Charles R Greathouse IV, Mar 11 2014
-
Python
from math import isqrt from sympy import primerange, integer_nthroot, primepi def A088247(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+1+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 11 2024
Formula
All p^k >= 16, prime p, k >= 3.
a(n) = n^3 log^3 n + O(n^3 log^2 n log log n). - Charles R Greathouse IV, Mar 11 2014
Comments