cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246549 Prime powers p^e where p is a prime and e >= 3 (prime powers without 1, the primes, or the squares of primes).

Original entry on oeis.org

8, 16, 27, 32, 64, 81, 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1331, 2048, 2187, 2197, 2401, 3125, 4096, 4913, 6561, 6859, 8192, 12167, 14641, 15625, 16384, 16807, 19683, 24389, 28561, 29791, 32768, 50653, 59049, 65536, 68921, 78125, 79507, 83521, 103823, 117649, 130321, 131072, 148877, 161051, 177147, 205379
Offset: 1

Views

Author

Joerg Arndt, Aug 29 2014

Keywords

Comments

Consists of 8 and the terms of A088247. - R. J. Mathar, Sep 01 2014

Crossrefs

Programs

  • Mathematica
    With[{nn=60},Take[Union[Flatten[Table[p^Range[3,nn/3],{p,Prime[ Range[ nn]]}]]],nn]] (* Harvey P. Dale, Dec 10 2015 *)
  • PARI
    for(n=1, 10^6, if(isprimepower(n)>=3, print1(n, ", ")));
    
  • PARI
    m=10^6; v=[]; forprime(p=2, m^(1/3), e=3; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ Faster program. Jens Kruse Andersen, Aug 29 2014
    
  • Python
    from math import isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A246549(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 11 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^2*(p-1)) = A152441. - Amiram Eldar, Oct 24 2020

A088248 Orders of twisted fields.

Original entry on oeis.org

27, 64, 81, 125, 243, 256, 343, 512, 625, 729, 1024, 1331, 2187, 2197, 2401, 3125, 4096, 4913, 6561, 6859, 12167, 14641, 15625, 16384, 16807, 19683, 24389, 28561, 29791, 32768, 50653, 59049, 65536, 68921, 78125, 79507, 83521, 103823, 117649
Offset: 1

Views

Author

Marc LeBrun, Sep 25 2003

Keywords

Comments

Subset of prime powers A000961. Subset of orders of semifields A088247.

References

  • D. E. Knuth, ``Finite Semifields and Projective Planes'' Selected Papers on Discrete Mathematics, Center for the Study of Language and Information, Leland Stanford Junior University, CA, 2003, p336.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{f, p, k}, If[n <= 16, False, f = FactorInteger[n]; If[Length[f] > 1, False, {p, k} = First[f]; k >= 3 && Not[p == 2 && PrimeQ[k]]]]]; Select[Range[10^6], okQ] (* Jean-François Alcover, Jul 07 2015 *)
  • Python
    from math import isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A088248(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x+primepi(x.bit_length()-1)-sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 11 2024

Formula

All p^k > 16, prime p, k>=3, except 2^q, q prime.
Showing 1-2 of 2 results.