cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A384785 The number of unordered factorizations of the n-th cubefull number into 1 and prime powers p^e where p is prime and e >= 3 (A246549).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 9, 1, 1, 2, 1, 2, 3, 1, 3, 1, 2, 10, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 2, 2, 2, 13, 1, 1, 2, 1, 1, 4, 1, 3, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 1, 2, 3, 17, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The positive values of the multiplicative function f(n) with f(p^e) = A008483(e). Or, equivalently, a(n) is the value of this function at A036966(n).

Examples

			a(6) = 2 since the 6th cubefull number, A036966(6) = 64, has 2 factorizations: 2^3 * 2^3 and 2^6.
a(12) = 3 since the 12th cubefull number, A036966(12) = 256, has 3 factorizations: 2^3 * 2^5, 2^4 * 2^4, and 2^8.
		

Crossrefs

Cf. A008483, A036966, A246549, A384783 (powerful analog), A384786.

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1] - PartitionsP[e-2] + PartitionsP[e-3]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq[lim_] := Module[{cub = Union[Flatten[Table[i^3*j^4*k^5, {k, 1, Surd[lim, 5]}, {j, 1, Surd[lim/k^5, 4]}, {i, 1, Surd[lim/(j^4*k^5), 3]}]]]}, Select[s /@ cub, # > 0 &]]; seq[10^5]
  • PARI
    s(n) = vecprod(apply(x -> numbpart(x)-numbpart(x-1)-numbpart(x-2)+numbpart(x-3), factor(n)[, 2]));
    cubs(lim) = {my(c = List()); for(k = 1, sqrtnint(lim, 5), for(j = 1, sqrtnint(lim \ k^5, 4), for(i = 1, sqrtnint(lim \ (j^4*k^5), 3), listput(c, i^3*j^4*k^5)))); Set(c); }
    list(lim) = {my(c = cubs(lim), v = List(), s1); for(k = 1, #c, s1 = s(c[k]); if(s1 > 0, listput(v, s1))); Vec(v);}

A384786 Numbers with a record number of unordered factorizations into 1 and prime powers p^e where p is prime and e >= 3 (A246549).

Original entry on oeis.org

1, 64, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592, 17179869184, 34359738368, 68719476736
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The least term that is not a power of 2 is a(85) = 2^61 * 3^18.
Indices of records of the multiplicative function f(n) with f(p^e) = A008483(e).
All the terms are cubefull numbers since f(1) = 1 and f(n) = 0 if n is a noncubefull number.
The corresponding record values are 1, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, ... (see the link for more values).

Crossrefs

Subsequence of A001694 and A025487 (i.e., of A181800).
Cf. A008483, A046055, A246549, A384784 (powerful analog), A384785.

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1] - PartitionsP[e-2] + PartitionsP[e-3]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; With[{lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, sm = -1; seq = {}; Do[s1 = s[lps[[i]]]; If[s1 > sm, sm = s1; AppendTo[seq, lps[[i]]]], {i, 1, Length[lps]}]; seq]

A381316 Numbers whose powerful part (A057521) is a power of a prime with an exponent >= 3 (A246549).

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 80, 81, 88, 96, 104, 112, 120, 125, 128, 135, 136, 152, 160, 162, 168, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 296, 297, 304, 312, 320, 328, 336, 343, 344, 351, 352, 368, 375, 376, 378
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

First differs from A344653 and A345193 at n = 17: a(17) = 120 is not a term of these sequences.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., m} with m >= 3, i.e., any number (including zero) of 1's and then a single number >= 3.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} 1/(p*(p^2-1)) = A369632 / A013661 = 0.13463358553764438661... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;; , 2]]]}, e[[1]] > 2 && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000], q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); e[1] > 2 && (#e == 1 || e[2] == 1));

A246551 Prime powers p^e where p is a prime and e is odd.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313
Offset: 1

Views

Author

Joerg Arndt, Aug 29 2014

Keywords

Comments

These are the integers with only one prime factor whose cototient is square, so this sequence is a subsequence of A063752. Indeed, cototient(p^(2k+1)) = (p^k)^2 and cototient(p) = 1 = 1^2. - Bernard Schott, Jan 08 2019
With 1 prepended, this sequence is the lexicographically earliest sequence of distinct numbers whose partial products are all numbers whose exponents in their prime power factorization are squares (A197680). - Amiram Eldar, Sep 24 2024

Crossrefs

Cf. A000961, A246547, A246549, A168363, A197680, subsequence of A171561.
Cf. also A056798 (prime powers with even exponents >= 0).
Subsequence of A063752.

Programs

  • Magma
    [n:n in [2..1000]| #PrimeDivisors(n) eq 1 and IsSquare(n-EulerPhi(n))]; // Marius A. Burtea, May 15 2019
    
  • Mathematica
    Take[Union[Flatten[Table[Prime[n]^(k + 1), {n, 100}, {k, 0, 14, 2}]]], 100] (* Vincenzo Librandi, Jan 10 2019 *)
  • PARI
    for(n=1, 10^4, my(e=isprimepower(n)); if(e%2==1, print1(n, ", ")))
    
  • Python
    from sympy import primepi, integer_nthroot
    def A246551(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0])for k in range(1,x.bit_length(),2)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024

A304326 Number of ways to write n as a product of a number that is not a perfect power and a squarefree number.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 0, 1, 3, 1, 3, 1, 3, 3, 0, 1, 3, 1, 3, 3, 3, 1, 2, 1, 3, 0, 3, 1, 7, 1, 0, 3, 3, 3, 3, 1, 3, 3, 2, 1, 7, 1, 3, 3, 3, 1, 2, 1, 3, 3, 3, 1, 2, 3, 2, 3, 3, 1, 7, 1, 3, 3, 0, 3, 7, 1, 3, 3, 7, 1, 3, 1, 3, 3, 3, 3, 7, 1, 2, 0, 3, 1, 7, 3, 3, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 10 2018

Keywords

Examples

			The a(180) = 7 ways are (6*30), (12*15), (18*10), (30*6), (60*3), (90*2), (180*1).
		

Crossrefs

Positions of zeros are A246549. Range appears to be A075427.

Programs

  • Mathematica
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]===1];
    Table[Length[Select[Divisors[n],radQ[#]&&SquareFreeQ[n/#]&]],{n,100}]
  • PARI
    a(n)={sumdiv(n, d, d<>1 && !ispower(d) && issquarefree(n/d))} \\ Andrew Howroyd, Aug 26 2018

A304327 Number of ways to write n as a product of a perfect power and a squarefree number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 10 2018

Keywords

Comments

First term greater than 2 is a(746496) = 3.

Examples

			The a(746496) = 3 ways are 12^5*3, 72^3*2, 864^2*1.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],(#===1||GCD@@FactorInteger[#][[All,2]]>1)&&SquareFreeQ[n/#]&]],{n,100}]
  • PARI
    A304327(n) = sumdiv(n,d,issquarefree(n/d)*((1==d)||ispower(d))); \\ Antti Karttunen, Jul 29 2018

Extensions

More terms from Antti Karttunen, Jul 29 2018

A152441 Decimal expansion of Sum_{primes p} 1/(p^2*(p-1)).

Original entry on oeis.org

3, 2, 0, 9, 0, 9, 2, 4, 9, 0, 0, 8, 7, 2, 9, 6, 2, 9, 3, 5, 7, 8, 2, 4, 0, 9, 5, 0, 2, 3, 6, 9, 4, 4, 6, 1, 4, 4, 5, 5, 0, 9, 9, 9, 2, 8, 4, 3, 2, 9, 3, 6, 2, 6, 5, 7, 4, 5, 8, 7, 1, 3, 7, 0, 0, 5, 5, 4, 4, 0, 0, 1, 1, 2, 5, 3, 2, 2, 5, 2, 3, 3, 8, 4, 8, 4, 1, 2, 1, 4, 4, 6, 8, 4, 1, 3, 9, 6, 0, 1, 0, 6, 1, 3
Offset: 0

Views

Author

R. J. Mathar, Dec 04 2008

Keywords

Comments

Generally, sum_p 1/(p^s*(p-1)) equals A136141 minus the sum over all prime zeta functions with index 2 to s (see A085964 to A085969).

Examples

			0.320909249008729629357824095023694461445509992843293626574587137005544001125... = 1/(4*1) + 1/(9*2) + 1/(25*4) + 1/(49*6) + ...
		

Crossrefs

Programs

  • Mathematica
    digits = 104; sp = NSum[PrimeZetaP[n], {n, 3, Infinity},  WorkingPrecision -> digits + 10, NSumTerms -> 2*digits]; RealDigits[sp, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
  • PARI
    sumeulerrat(1/(p^2*(p-1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals A136141 minus A085548 .
Equals Sum_{n>=1} 1/A246549(n). - Amiram Eldar, Oct 27 2020

Extensions

More digits from Jean-François Alcover, Sep 11 2015

A386632 Numbers k such that there is a disjoint inseparable way to choose a strict integer partition of each exponent in the prime factorization of k.

Original entry on oeis.org

8, 16, 27, 32, 64, 81, 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1331, 1536, 2048, 2187, 2197, 2304, 2401, 2560, 3072, 3125, 3456, 3584, 4096, 4608, 4913, 5120, 5184, 5632, 6144, 6400, 6561, 6656, 6859, 6912, 7168, 8192, 8704, 9216, 9728, 10240, 11264
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2025

Keywords

Comments

First cubefull number (A246549) not in this sequence is 216.
The first term that is not a prime power is 1536.
A set partition is inseparable iff the underlying set has no permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.

Examples

			The prime indices of 2304 are {1,1,1,1,1,1,1,1,2,2}, and we have disjoint inseparable choice {{4,3,1},{2}}, so 2304 is in the sequence.
The terms together with their prime indices begin:
     8: {1,1,1}
    16: {1,1,1,1}
    27: {2,2,2}
    32: {1,1,1,1,1}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   343: {4,4,4}
   512: {1,1,1,1,1,1,1,1,1}
   625: {3,3,3,3}
   729: {2,2,2,2,2,2}
		

Crossrefs

This is the inseparable case of A351294, positives in A386575, counted by A239455.
Also positions of positive terms in A386582.
A000110 counts set partitions, ordered A000670.
A003242 and A335452 count separations, ranks A333489.
A025065/A386638 counts inseparable type partitions, ranks A335126, sums of A386586.
A325534 counts separable multisets, ranks A335433, sums of A386583.
A325535 counts inseparable multisets, ranks A335448, sums of A386584.
A336106 counts separable type partitions, ranks A335127, sums of A386585.
A386633 counts separable type set partitions, row sums of A386635.
A386634 counts inseparable type set partitions, row sums of A386636.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    dsj[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    insepQ[y_]:=2*Max[y]>Total[y]+1;
    Join@@Position[Sign[Table[Length[Select[dsj[prix[n]],insepQ[Length/@#]&]],{n,1000}]],1]

A246550 Prime powers p^e where p is a prime and e >= 4.

Original entry on oeis.org

16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 2048, 2187, 2401, 3125, 4096, 6561, 8192, 14641, 15625, 16384, 16807, 19683, 28561, 32768, 59049, 65536, 78125, 83521, 117649, 130321, 131072, 161051, 177147, 262144, 279841, 371293, 390625, 524288, 531441, 707281, 823543, 923521, 1048576, 1419857, 1594323, 1771561
Offset: 1

Views

Author

Joerg Arndt, Aug 29 2014

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^7: # to get all terms <= N
    {seq(seq(p^m, m=4..floor(log[p](N))), p = select(isprime,[2,seq(2*i+1,i=1..floor(N^(1/4)))]))}; # Robert Israel, Aug 29 2014
  • Mathematica
    With[{max = 10^6}, Sort @ Flatten @ Table[p^Range[4, Floor[Log[p, max]]], {p, Select[Range[Surd[max, 4]], PrimeQ]}]] (* Amiram Eldar, Oct 24 2020 *)
  • PARI
    m=10^7; v=[]; forprime(p=2, m^(1/4), e=4; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ Jens Kruse Andersen, Aug 29 2014
    
  • Python
    from math import isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A246550(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(4, x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^3*(p-1)) = 0.1461466097... - Amiram Eldar, Oct 24 2020

A375145 Numbers whose prime factorization has exactly one exponent that is larger than 2.

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 120, 125, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336, 343, 344
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Subsequence of A046099 and first differs from it at n = 35: A046099(35) = 216 = 2^3 * 3^3 is not a term of this sequence.
The asymptotic density of this sequence is (1/zeta(3)) * Sum_{p prime} 1/(p^3-1) = A286229 / A002117 = 0.16148833663564192901... .

Examples

			8 = 2^3 is a term since its prime factorization has exactly one exponent, 3, that is larger than 2.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 2 &)] == 1; Select[Range[350], q]
  • PARI
    is(k) = #select(x -> x > 2, factor(k)[, 2]) == 1;
Showing 1-10 of 11 results. Next