cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A380840 Decimal expansion of Sum_{p prime} 1/(p-1)^3.

Original entry on oeis.org

1, 1, 4, 7, 5, 2, 9, 0, 9, 7, 7, 5, 8, 5, 8, 0, 0, 4, 6, 9, 3, 3, 2, 8, 3, 8, 0, 6, 2, 8, 2, 1, 3, 0, 4, 0, 1, 6, 4, 4, 7, 6, 4, 7, 3, 5, 5, 2, 5, 1, 1, 2, 2, 5, 5, 2, 7, 5, 8, 2, 4, 1, 2, 3, 9, 5, 0, 5, 3, 3, 5, 9, 0, 4, 5, 5, 0, 4, 5, 4, 3, 1, 4, 7, 2, 6, 5, 2, 2, 8, 7, 3, 7, 2, 6, 9, 0, 9, 4, 6, 7, 5, 1, 6, 8, 0
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2025

Keywords

Examples

			1.1475290977585800469332838..,
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/(p-1)^3)

A246549 Prime powers p^e where p is a prime and e >= 3 (prime powers without 1, the primes, or the squares of primes).

Original entry on oeis.org

8, 16, 27, 32, 64, 81, 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1331, 2048, 2187, 2197, 2401, 3125, 4096, 4913, 6561, 6859, 8192, 12167, 14641, 15625, 16384, 16807, 19683, 24389, 28561, 29791, 32768, 50653, 59049, 65536, 68921, 78125, 79507, 83521, 103823, 117649, 130321, 131072, 148877, 161051, 177147, 205379
Offset: 1

Views

Author

Joerg Arndt, Aug 29 2014

Keywords

Comments

Consists of 8 and the terms of A088247. - R. J. Mathar, Sep 01 2014

Crossrefs

Programs

  • Mathematica
    With[{nn=60},Take[Union[Flatten[Table[p^Range[3,nn/3],{p,Prime[ Range[ nn]]}]]],nn]] (* Harvey P. Dale, Dec 10 2015 *)
  • PARI
    for(n=1, 10^6, if(isprimepower(n)>=3, print1(n, ", ")));
    
  • PARI
    m=10^6; v=[]; forprime(p=2, m^(1/3), e=3; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ Faster program. Jens Kruse Andersen, Aug 29 2014
    
  • Python
    from math import isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A246549(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 11 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^2*(p-1)) = A152441. - Amiram Eldar, Oct 24 2020

A135177 a(n) = p^2*(p-1), where p = prime(n).

Original entry on oeis.org

4, 18, 100, 294, 1210, 2028, 4624, 6498, 11638, 23548, 28830, 49284, 67240, 77658, 101614, 146068, 201898, 223260, 296274, 352870, 383688, 486798, 564898, 697048, 903264, 1020100, 1082118, 1213594, 1283148, 1430128, 2032254, 2230930
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4) = 294 because the 4th prime number is 7, 7^2 = 49, 7-1 = 6 and 49 * 6 = 294.
		

Crossrefs

Cf. A001248 (p^2), A030078 (p^3), A045991 (n^2 * (n-1)), A065414, A065483, A138416 (terms halved), A152441.
Column 4 of A379010.

Programs

Formula

a(n) = p^3 - p^2 = A030078(n) - A001248(n).
a(n) = A000010(prime(n)^3). - R. J. Mathar, Oct 15 2017
Sum_{n>=1} 1/a(n) = A152441. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 22 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065483.
Product_{n>=1} (1 - 1/a(n)) = A065414. (End)
a(n) = 2*A138416(n). - Antti Karttunen, Dec 14 2024

A372695 Cubefull numbers that are not prime powers.

Original entry on oeis.org

216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5488, 5832, 6912, 7776, 8000, 9261, 10000, 10125, 10368, 10648, 10976, 11664, 13824, 15552, 16000, 16875, 17496, 17576, 19208, 20000, 20736, 21296, 21952, 23328, 25000
Offset: 1

Views

Author

Michael De Vlieger, May 14 2024

Keywords

Comments

Numbers k such that rad(k)^3 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 2.
Proper subset of the following sequences: A001694, A036966, A126706, A286708.
Superset of A372841.
Smallest term k with omega(k) = m is k = A002110(m)^3 = A115964(m).

Examples

			Table of smallest 12 terms and instances of omega(a(n)) = m for m = 2..4
    n      a(n)
  ------------------------
    1      216 = 2^3 * 3^3
    2      432 = 2^4 * 3^3
    3      648 = 2^3 * 3^4
    4      864 = 2^5 * 3^3
    5     1000 = 2^3 * 5^3
    6     1296 = 2^4 * 3^4
    7     1728 = 2^6 * 3^3
    8     1944 = 2^3 * 3^5
    9     2000 = 2^4 * 5^3
   10     2592 = 2^5 * 3^4
   11     2744 = 2^3 * 7^3
   12     3375 = 3^3 * 5^3
  ...
   43    27000 = 2^3 * 3^3 * 5^3
  ...
  587  9261000 = 2^3 * 3^3 * 5^3 * 7^3
		

Crossrefs

Programs

  • Mathematica
    nn = 25000; Rest@ Select[Union@ Flatten@ Table[a^5 * b^4 * c^3, {c, Surd[nn, 3]}, {b, Surd[nn/(c^3), 4]}, {a, Surd[nn/(b^4 * c^3), 5]}], Not@*PrimePowerQ]
  • Python
    from math import gcd
    from sympy import primepi, integer_nthroot, factorint
    def A372695(n):
        def f(x):
            c = n+1+x+sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length()))
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c -= integer_nthroot(z//y**4,3)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

Intersection of A036966 and A024619.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) - Sum_{p prime} 1/(p^2*(p-1)) - 1 = A065483 - A152441 - 1 = 0.0188749045... . - Amiram Eldar, May 17 2024

A366076 The number of prime factors of the largest divisor of n that is a cubefull number (A036966), counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2023

Keywords

Comments

The sum of exponents larger than 2 in the prime factorization of n.
The number of distinct prime factors of the largest divisor of n that is a cubefull number is A295659(n).

Crossrefs

Similar sequence: A275812 (number of prime factors of the powerful part).

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, 0, e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> if(x < 3, 0, x), factor(n)[, 2]));

Formula

a(n) = A001222(A360540(n)).
a(n) = A001222(n) - A366077(n).
Additive with a(p^e) = 0 if e <= 2, and a(p^e) = e for e >= 3.
a(n) >= 0, with equality if and only if n is cubefree (A004709).
a(n) <= A001222(n), with equality if and only if n is cubefull (A036966).
a(n) >= 3*A295659(n), with equality if and only if n is a biquadratefree number (A046100).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (2/p^3 + 1/(p^2*(p-1))) = 2 * A085541 + A152441 = 0.67043452760761670220... .

A380688 Decimal expansion of Sum_{p prime} (p + 1)^3/((p - 1)^2*p^3).

Original entry on oeis.org

4, 1, 5, 8, 6, 3, 9, 6, 6, 8, 8, 9, 6, 3, 1, 1, 7, 9, 7, 9, 2, 1, 4, 4, 5, 6, 6, 4, 7, 3, 5, 1, 5, 5, 2, 1, 7, 8, 5, 3, 4, 7, 2, 4, 8, 6, 5, 2, 9, 9, 1, 8, 4, 8, 8, 5, 1, 2, 2, 0, 8, 5, 4, 7, 3, 0, 6, 8, 3, 4, 0, 8, 9, 6, 0, 9, 3, 2, 5, 2, 2, 9, 3, 1, 4, 0, 9, 8, 0, 3, 5, 7, 6, 4, 3, 6, 1, 9, 4, 7, 9, 3, 4
Offset: 1

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			4.1586396688963117979214456647351...
		

Crossrefs

Programs

  • PARI
    sumeulerrat((p + 1)^3/((p - 1)^2*p^3)) \\ Amiram Eldar, Apr 02 2025

Formula

Equals 5*A085548 + A085541 - 12*A136141 + 8*A152441.
Equals P(2) + 5*P(3) + Sum_{k>=4} (8*k - 20) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025
Showing 1-6 of 6 results.