cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A376936 Powerful numbers divisible by cubes of 2 distinct primes.

Original entry on oeis.org

216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5400, 5488, 5832, 6912, 7776, 8000, 9000, 9261, 10000, 10125, 10368, 10584, 10648, 10800, 10976, 11664, 13500, 13824, 15552, 16000, 16200, 16875, 17496, 17576, 18000
Offset: 1

Views

Author

Michael De Vlieger, Oct 16 2024

Keywords

Comments

Numbers m with coreful divisors d, m/d such that neither d | m/d nor m/d | d, i.e., numbers m such that there exists a divisor pair (d, m/d) such that rad(d) = rad(m/d) but gcd(d, m/d) > 1 is neither d nor m/d, where rad = A007947. Divisors in each pair must be dissimilar and each in A126706.
Proper subset of A320966.
Contains A372695, A177493, and A162142. Does not contain A085986.

Examples

			216 is in the sequence since rad(12) | rad(18), but 12 does not divide 18 and 18 does not divide 12.
432 is a term since rad(18) | rad(24), but 18 does not divide 24 and 24 does not divide 18.
Table of coreful divisors d, a(n)/d such that neither d | a(n)/d nor a(n)/d | d for select a(n)
   n |   a(n)   divisor pairs d X a(n)/d
  ---------------------------------------------------------------------------
   1 |   216:   12 X 18;
   2 |   432:   18 X 24;
   3 |   648:   12 X 54;
   4 |   864:   24 X 36, 18 X 48;
   5 |  1000:   20 X 50;
   6 |  1296:   24 X 54;
   7 |  1728:   18 X 96, 36 X 48;
   8 |  1944:   12 X 162, 36 X 54;
   9 |  2000:   40 X 50;
  10 |  2592:   24 X 108, 48 X 54;
  11 |  2744:   28 X 98;
  12 |  3375:   45 X 75;
  13 |  3456:   18 X 192, 36 X 96, 48 X 72;
  22 |  7776:   24 X 324, 48 X 162, 54 X 144, 72 X 108;
  58 | 31104:   48 X 648, 54 X 576, 96 X 324, 108 X 288, 144 X 216, 162 X 192
		

Crossrefs

Programs

  • Mathematica
    Union@ Select[
      Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[20000],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (15/Pi^2) * (1 + Sum_{prime} 1/((p-1)*(p^2+1))) = 0.021194288968234037106579437374641326044... . - Amiram Eldar, Nov 08 2024

A378767 Numbers k that are not prime powers which are divisible by a cube greater than 1.

Original entry on oeis.org

24, 40, 48, 54, 56, 72, 80, 88, 96, 104, 108, 112, 120, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 248, 250, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336, 344, 351, 352, 360, 368, 375, 376, 378, 384
Offset: 1

Views

Author

Michael De Vlieger, Dec 06 2024

Keywords

Comments

Products m = j*k such that omega(k) = omega(m) > omega(j), where rad(j) | k but j does not divide k, with rad = A007947 and omega = A001221.
Proper subset of A126706.
This sequence is distinct from A362148, since this sequence also contains 216, 432, etc.

Examples

			Prime decomposition of select a(n) = m, showing m = j*k:
a(1) = 24 = 2^3 * 3 = 4 * 6.
a(2) = 40 = 2^3 * 5 = 4 * 10.
a(3) = 48 = 2^4 * 3 = 8 * 6.
a(4) = 54 = 2 * 3^3 = 9 * 6.
a(5) = 56 = 2^3 * 7 = 4 * 14.
a(6) = 72 = 2^3 * 3^2 = 4 * 18.
a(9) = 96 = 2^5 * 3 = 8 * 12 = 16 * 6.
a(130) = 864 = 2^5 * 3^2 = 8 * 108 = 9 * 96 = 16 * 54, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[2^10], AnyTrue[FactorInteger[#][[All, -1]], # > 2 &] &], Not@*PrimePowerQ]

Formula

{a(n)} = { k : omega(k) > 1, there exists p | k such that p^3 | k }.
Intersection of A046099 and A024619.
Union of A362148 and A372695.

A378768 Squares of powerful numbers that are not prime powers.

Original entry on oeis.org

1296, 5184, 10000, 11664, 20736, 38416, 40000, 46656, 50625, 82944, 104976, 153664, 160000, 186624, 194481, 234256, 250000, 331776, 419904, 455625, 456976, 614656, 640000, 746496, 810000, 937024, 944784, 1000000, 1185921, 1265625, 1327104, 1336336, 1500625, 1679616
Offset: 1

Views

Author

Michael De Vlieger, Dec 06 2024

Keywords

Comments

Contained in A286708, which is a proper subset of A126706.

Crossrefs

Programs

  • Mathematica
    With[{nn = 2000}, Select[Rest@ Union[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}] ], Not@*PrimePowerQ]^2]
  • Python
    from math import isqrt
    from sympy import integer_nthroot, primepi, mobius
    def A378768(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length()))
        return bisection(f, n, n)**2 # Chai Wah Wu, Dec 08 2024

Formula

a(n) = A286708(n)^2.
Intersection of A000290 and A286708.
Intersection of A000290 and A372695.
Sum_{n>=1} 1/a(n) = zeta(4)*zeta(6)/zeta(12) - Sum_{p prime} (1/(p^4-p^2)) - 1 = 0.0013772572536044025109... . - Amiram Eldar, Dec 10 2024

A372841 4-full numbers that are not prime powers.

Original entry on oeis.org

1296, 2592, 3888, 5184, 7776, 10000, 10368, 11664, 15552, 20000, 20736, 23328, 31104, 34992, 38416, 40000, 41472, 46656, 50000, 50625, 62208, 69984, 76832, 80000, 82944, 93312, 100000, 104976, 124416, 139968, 151875, 153664, 160000, 165888, 186624, 194481, 200000
Offset: 1

Views

Author

Michael De Vlieger, May 14 2024

Keywords

Comments

Numbers k such that rad(k)^4 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 3.
Proper subset of the following sequences: A001694, A036966, A036967, A126706, A286708, A372695.
Smallest term k with omega(k) = m is k = A002110(m)^4.

Examples

			Table of smallest 12 terms:
   n      a(n)
  -----------------------
   1     1296 = 2^4 * 3^4
   2     2592 = 2^5 * 3^4
   3     3888 = 2^4 * 3^5
   4     5184 = 2^6 * 3^4
   5     7776 = 2^5 * 3^5
   6    10000 = 2^4 * 5^4
   7    10368 = 2^7 * 3^4
   8    11664 = 2^4 * 3^6
   9    15552 = 2^6 * 3^5
  10    20000 = 2^5 * 5^4
  11    20736 = 2^8 * 3^4
  12    23328 = 2^5 * 3^6
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 200000}, Rest@ Select[Union@ Flatten@ Table[a^7 * b^6 * c^5 * d^4, {d, Surd[nn, 4]}, {c, Surd[nn/(d^4), 5]}, {b, Surd[nn/(c^5 * d^4), 6]}, {a, Surd[nn/(b^6 * c^5 * d^4), 7]}], Not@*PrimePowerQ]]
  • Python
    from math import gcd
    from sympy import primepi, integer_nthroot, factorint
    def A372841(n):
        def f(x):
            c = n+x+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(4, x.bit_length()))
            for u in range(1,integer_nthroot(x,7)[0]+1):
                if all(d<=1 for d in factorint(u).values()):
                    for w in range(1,integer_nthroot(a:=x//u**7,6)[0]+1):
                        if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()):
                            for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1):
                                if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()):
                                    c -= integer_nthroot(z//y**5,4)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Intersection of A036967 and A024619.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) - Sum_{p prime} 1/(p^3*(p-1)) - 1 = 0.0026996042121456100761... . - Amiram Eldar, May 17 2024

A379773 Numbers that set records in in A379772.

Original entry on oeis.org

24, 96, 384, 1080, 2160, 4320, 8640, 12960, 17280, 34560, 38880, 69120, 77760, 108000, 155520, 311040, 432000, 622080, 756000, 1512000, 2268000, 3024000, 4536000, 5292000, 6804000, 9072000, 12096000, 13608000, 21168000, 27216000, 47628000, 54432000, 74088000, 81648000
Offset: 1

Views

Author

Michael De Vlieger, Jan 04 2025

Keywords

Comments

Proper subset of the intersection A025487 and A378767.
Conjecture: a(n) is powerful (i.e., in A286708) for n >= 68. Additionally, for some n much larger than 68, a(n) may be cubefull (i.e., in A372695).

Examples

			Let b(n) = A379772(n).
Table showing exponents of prime power factors of a(n) for n = 1..20.
Example: a(5) = 2160 = 2^4 * 3^3 * 5, hence we write "4.3.1".
   n     a(n)  Exp.   b(a(n))
  ----------------------------------
   1      24   3.1      1   4*6
   2      96   5.1      2   6*16 = 8*12
   3     384   7.1      3   6*64 = 12*32 = 16*24
   4    1080   3.3.1    5   4*270 = 9*120 = 12*90 = 18*60 = 30*36
   5    2160   4.3.1    6   8*270 = 9*240 = 18*120 = 24*90 = 30*72 = 36*60
   6    4320   5.3.1    9
   7    8640   6.3.1   10
   8   12960   5.4.1   11
   9   17280   7.3.1   13
  10   34560   8.3.1   14
  11   38880   5.5.1   16
  12   69120   9.3.1   17
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0; s = Select[Union@ Flatten@ f[8][[3 ;; -1]], Not @* SquareFreeQ];
    rad[x_] := Times @@ FactorInteger[x][[All, 1]]; nn = Length[s];
    Reap[Do[k = s[[i]];
      If[# > r, r = #; Sow[k] ] &@
        Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
          _?((m = GCD @@ {##};
          And[! MemberQ[{1, #1, #2}, m],
            And[PrimeNu[#1] < PrimeNu[#2], Divisible[#2, rad[#1]]] & @@
            SortBy[{##}, PrimeNu]]) & @@ # &)], {i, nn}] ][[-1, 1]]
Showing 1-5 of 5 results.