cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378900 Squares of numbers divisible by the squares of two distinct primes.

Original entry on oeis.org

1296, 5184, 10000, 11664, 20736, 32400, 38416, 40000, 46656, 50625, 63504, 82944, 90000, 104976, 129600, 153664, 156816, 160000, 186624, 194481, 202500, 219024, 234256, 250000, 254016, 291600, 331776, 345744, 360000, 374544, 419904, 455625, 456976, 467856, 490000
Offset: 1

Views

Author

Michael De Vlieger, Dec 12 2024

Keywords

Comments

Also, the squares in A376936.
Proper subset of A378767, in turn a proper subset of A286708, the intersection of A001694 and A024619.
Numbers that have 3 kinds of coreful divisor pairs (d, k/d), d | k, i.e., rad(d) = rad(k/d) = rad(k) where rad = A007947. These kinds are described as follows:
Type A: d = k/d, which pertain to square k (in A000290).
Type B: d | k/d, d < k/d, which pertain to k in A320966, powerful numbers divisible by a cube.
Type C: neither d | k/d nor k/d | d, which pertain to k in A376936.
Since divisors d, k/d may either divide or not divide the other, there are no other cases.
In addition the following kinds of divisor pairs are also seen:
Type D: (d, k/d) such that d | k/d but there exists a factor Q | k/d that does not divide d. Then omega(d) < omega(k/d) = omega(k).
Type E: Nontrivial unitary divisor pairs (d, k/d) such that gcd(d, k/d) = 1, d > 1, k/d > 1. Let prime power factor p^m | k be such that m is maximized. Then set d = p^m and it is clear that for any k in A024619, there exists at least 1 nontrivial unitary divisor pair.

Examples

			Let b = A036785.
Table of the first 12 terms of this sequence, showing examples of types A, B, and C of coreful pairs of divisors.
   n    a(n)   Factors of a(n)    b(n)   Type B       Type C
  -------------------------------------------------------------
   1    1296   2^4  * 3^4          36    6 * 216      24 * 54
   2    5184   2^6  * 3^4          72    6 * 864      48 * 108
   3   10000   2^4  * 5^4         100   10 * 1000     40 * 250
   4   11664   2^4  * 3^6         108    6 * 1944     24 * 486
   5   20736   2^8  * 3^4         144    6 * 3456     54 * 384
   6   32400   2^4  * 3^4 * 5^2   180   30 * 1080    120 * 270
   7   38416   2^4  * 7^4         196   14 * 2744     56 * 686
   8   40000   2^6  * 5^4         200   10 * 4000     80 * 500
   9   46656   2^6  * 3^6         216    6 * 7776     48 * 972
  10   50625   3^4  * 5^4         225   15 * 3375    135 * 375
  11   63504   2^4  * 3^4 * 7^2   252   42 * 1512    168 * 378
  12   82944   2^10 * 3^4         288    6 * 13824    54 * 1536
		

Crossrefs

Programs

  • Mathematica
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}],   IntegerQ@ Sqrt[#] &] &[500000];
    Union@ Select[s, Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]

Formula

a(n) = A036785(n)^2.
Sum_{n>=1} 1/a(n) = Pi^2/6 - (15/Pi^2) * (1 + Sum_{p prime} 1/(p^4-1)) = 0.0015294876575980711757... . - Amiram Eldar, Dec 21 2024

A380857 Squares of numbers that are neither squarefree nor prime powers.

Original entry on oeis.org

144, 324, 400, 576, 784, 1296, 1600, 1936, 2025, 2304, 2500, 2704, 2916, 3136, 3600, 3969, 4624, 5184, 5625, 5776, 6400, 7056, 7744, 8100, 8464, 9216, 9604, 9801, 10000, 10816, 11664, 12544, 13456, 13689, 14400, 15376, 15876, 17424, 18225, 18496, 19600, 20736
Offset: 1

Views

Author

Michael De Vlieger, Feb 06 2025

Keywords

Comments

Proper subset of A359280 which is a proper subset of A286708 (powerful numbers that are not prime powers, a proper subset of A126706).
Does not intersect A362605.

Crossrefs

Cf. A059404, A126706, A177492 (k^2 for k in A120944), A286708, A359280, A362605, A378768 (k^2 for k in A286708).

Programs

  • Mathematica
    Select[Range[150], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]^2
  • PARI
    isok(k) = !issquarefree(k) && !isprimepower(k); \\ A126706
    apply(sqr, select(isok, [1..200])) \\ Michel Marcus, Feb 07 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, mobius
    def A380857(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        return bisection(f,n,n)**2 # Chai Wah Wu, Feb 08 2025

Formula

a(n) = A126706(n)^2.
Sum_{n>=1} 1/a(n) = Pi^2/6 - 15/Pi^2 - Sum_{p prime} 1/(p^2*(p^2-1)) = A013661 - A082020 + A085548 - A154945 = 0.025670434597226178881... . - Amiram Eldar, Feb 08 2025
Showing 1-2 of 2 results.