A088330 Sum of the remainders when n is divided by nonzero numbers obtained by deleting one digit. The sum ranges over all the digits.
0, 0, 0, 1, 2, 0, 4, 3, 2, 1, 0, 1, 0, 3, 0, 1, 2, 7, 4, 3, 0, 1, 2, 0, 3, 2, 0, 3, 8, 3, 0, 1, 2, 4, 0, 1, 6, 8, 0, 5, 0, 1, 2, 5, 6, 0, 3, 3, 5, 9, 0, 1, 2, 3, 4, 5, 0, 5, 6, 9, 0, 1, 2, 4, 6, 5, 10, 0, 7, 9, 0, 1, 2, 5, 4, 5, 8, 10, 0, 9, 0, 1, 2, 3, 6, 5, 6, 13, 10, 0, 0, 3, 8, 16, 10, 5, 20, 14, 12, 24, 0
Offset: 10
Examples
a(1234) = Rem[1234/123] + Rem[1234/124]+ Rem[1234/134] + Rem[1234/234] = 4+ 118 + 28 + 64 = 214 where Rem [a/b] = the remainder when a is divided by b.
Links
- Robert Israel, Table of n, a(n) for n = 10..10000
Crossrefs
Cf. A000042.
Programs
-
Maple
f:= proc(n) local L,d,i,j,x,t; L:= convert(n,base,10); d:= nops(L); t:= 0; for i from 1 to d do x:= add(L[j]*10^(j-1),j=1..i-1) + add(L[j]*10^(j-2),j=i+1..d); if x <> 0 then t:= t + (n mod x) fi; od; t end proc: map(f, [$10 .. 200]); # Robert Israel, Dec 05 2024
Formula
a((10^n - 1)/9) = n. for n > 2. a(1111111 n times ) = a(A000042(n)) = n, n > 2.
a(10 * n) = 10 * a(n). - Robert Israel, Dec 05 2024
Extensions
More terms from Ray Chandler, Oct 06 2003
Comments