A088355 G.f.: A(x) = 1/(1-x - x/(1-x - x^2/(1-x - x^3/(1-x - x^4/(1-x - x^5/(...)))))), a continued fraction.
1, 2, 5, 14, 41, 122, 366, 1103, 3332, 10078, 30503, 92360, 279722, 847283, 2566640, 7775383, 23555412, 71361969, 216195801, 654983362, 1984334264, 6011741892, 18213205238, 55178866432, 167170395758, 506461095121, 1534379837420, 4648573702811, 14083369899731, 42667133594949
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[1/Fold[(1 - x - #2/#1) &, 1, Reverse[x^Range[nmax]]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 24 2017 *)
-
PARI
N = 66; q = 'q + O('q^N); G(k) = if(k>N, 1, 1/( 1 - q - q^(k+1)*G(k+1)) ); gf = G(0); Vec(gf) \\ Joerg Arndt, Jun 29 2013
Formula
a(n) ~ c * d^n, where d = 3.0296112619721892426435033662444766469370800620363379560921091791758304730314... and c = 0.46759853331494118178113003272909690207439354761370218749894486984354... - Vaclav Kotesovec, Sep 24 2017
Extensions
Added more terms, Joerg Arndt, Jun 29 2013