A088374 Decimal expansion of a postulated upper estimate for the complex Grothendieck constant.
1, 4, 0, 4, 9, 0, 9, 1, 3, 2, 7, 3, 5, 7, 9, 5, 5, 3, 5, 5, 2, 5, 4, 4, 8, 1, 5, 0, 6, 1, 4, 6, 5, 4, 3, 4, 2, 7, 8, 1, 3, 4, 7, 6, 8, 0, 1, 8, 4, 1, 0, 8, 9, 5, 0, 5, 6, 8, 1, 1, 1, 6, 4, 1, 0, 6, 4, 9, 2, 8, 5, 4, 2, 9, 1, 8, 8, 7, 5, 4, 1, 5, 1, 1, 5, 2, 3, 4, 6, 0, 5, 2, 7, 2, 4, 6, 6, 8, 3, 7, 2, 6
Offset: 1
Examples
1.4049091327357955...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Grothendieck's Constant
Programs
-
Mathematica
psi[x_] := (Sqrt[1 - x^2]*(EllipticE[-x^2/(1 - x^2)] - EllipticK[-x^2/(1 - x^2)]))/x; x0 = x /. FindRoot[psi[x] == 1/8*Pi*(x + 1), {x, 1/2}, WorkingPrecision -> 110]; RealDigits[8/(Pi*(x0 + 1)), 10, 102] // First (* Jean-François Alcover, Feb 06 2013 *)