A333058 0, 1, or 2 primes at primorial(n) +- 1.
1, 1, 2, 2, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
a(2) = a(3) = a(5) = 2: 2*3 +-1 = {5,7}, 6*5 +-1 = {29,31} and 210*11 +-1 = {2309,2311} are twin primes. a(1) = a(4) = a(6) = 1: 1, 30*7 - 1 = 209 and 2310*13 + 1 = 30031 are not primes. a(7) = 0: 510509 = 61 * 8369 and 510511 = 19 * 26869 are not primes.
References
- H. Dubner, A new primorial prime, J. Rec. Math., 21 (No. 4, 1989), 276.
Links
- Chris K. Caldwell, the top 20: Primorial, 2012.
- H. Dubner & N. J. A. Sloane, Correspondence, 1991, on A005234.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 30029.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 9699667.
- Rudolf Ondrejka, The Top Ten: a Catalogue of Primal Configurations, 2001, tables 20, 20A, 20B.
- Eric Weisstein's World of Mathematics, Primorial Prime.
- Eric Weisstein's World of Mathematics, Euclid Number.
Crossrefs
Programs
-
Maple
p:= proc(n) option remember; `if`(n<1, 1, ithprime(n)*p(n-1)) end: a:= n-> add(`if`(isprime(p(n)+i), 1, 0), i=[-1, 1]): seq(a(n), n=0..120); # Alois P. Heinz, Mar 18 2020
-
Mathematica
primorial[n_] := primorial[n] = Times @@ Prime[Range[n]]; a[n_] := Boole@PrimeQ[primorial[n] - 1] + Boole@PrimeQ[primorial[n] + 1]; a /@ Range[0, 105] (* Jean-François Alcover, Nov 30 2020 *)
-
Rexx
S = '' ; Q = 1 do N = 1 to 27 Q = Q * PRIME( N ) T = ISPRIME( Q - 1 ) + ISPRIME( Q + 1 ) S = S || ',' T end N S = substr( S, 3 ) say S ; return S
Formula
a(n) = [ isprime(primorial(n) - 1) ] + [ isprime(primorial(n) + 1) ].
a(n) = Sum_{i in {-1,1}} A010051(primorial(n) + i).
Comments