cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088533 Numbers k such that bigomega(k!)/omega(k!) is an integer.

Original entry on oeis.org

2, 3, 4, 7, 15, 22, 24, 40, 49, 58, 71, 74, 92, 124, 179, 183, 232, 237, 413, 542, 547, 731, 752, 758, 983, 1266, 1283, 1289, 1336, 1706, 1712, 1725, 2656, 2909, 3509, 3612, 3653, 3674, 3702, 3709, 4617, 4646, 4697, 5993
Offset: 1

Views

Author

Cino Hilliard, Nov 16 2003

Keywords

Examples

			S(4!) = bigomega(4!) / omega(4!) = 4/2 = 2 so 4 is 3rd term in the sequence.
		

Crossrefs

Programs

  • Mathematica
    ointQ[n_]:=Module[{f=n!},IntegerQ[PrimeOmega[f]/PrimeNu[f]]]; Select[Range[ 2,6000],ointQ] (* Harvey P. Dale, Dec 07 2013 *)
    Omega = Nu = 0; a = {}; Do[If[PrimeQ[n], Nu++]; Omega += PrimeOmega[n];
    If[Divisible[Omega, Nu], AppendTo[a, n]], {n, 2, 6000}]; a (* Ivan Neretin, Mar 14 2017 *)
  • PARI
    for(x=2,10000,x1=x!;y=bigomega(x1)/omega(x1);if(y==floor(y),print1((x)",")))
    
  • PARI
    is(n)=my(s); forprime(p=2,n, my(k=n\p); while(k, s+=k; k\=p)); s%primepi(n)==0 \\ Charles R Greathouse IV, Feb 28 2025
    
  • PARI
    list(lim)=my(v=List(),b,s); forfactored(n=2,lim\1, b+=bigomega(n); if(n[2][,2]==[1]~, s++); if(b%s==0, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Feb 28 2025

Formula

Let k = number of prime divisors of n! counted with multiplicity; b = number of distinct prime divisors of n!. Then n is in sequence if k/b is an integer.