A088537 Decimal expansion of Madelung's constant M2.
1, 6, 1, 5, 5, 4, 2, 6, 2, 6, 7, 1, 2, 8, 2, 4, 7, 2, 3, 8, 6, 7, 9, 2, 3, 3, 3, 2, 7, 5, 8, 6, 1, 8, 0, 9, 0, 1, 9, 6, 4, 2, 2, 9, 2, 3, 6, 1, 3, 7, 7, 7, 1, 4, 5, 6, 9, 3, 7, 3, 5, 3, 5, 9, 6, 1, 2, 6, 5, 1, 2, 3, 1, 6, 1, 5, 3, 3, 3, 6, 2, 9, 0, 4, 1, 6, 5, 8, 9, 5, 5, 1, 7, 1, 8, 7, 2, 1, 4, 5, 5, 7, 4, 9, 0
Offset: 1
Examples
M2 = -1.61554262671282472386792333275861809...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 76-81.
Links
- I. J. Zucker, Exact results for some lattice sums in 2, 4, 6 and 8 dimensions, J. Phys. A: Math., Gen. vol. 7 (1974) no. 13, pp. 1568-1575.
Crossrefs
Cf. A059750.
Programs
-
Maple
M2:=evalf(4*(sqrt(2)-1)*Zeta(1/2)*sum('(-1)^n/sqrt(2*n+1)','n'=0..infinity),120); # Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 10 2009
-
Mathematica
(2-2*I)*(Sqrt[2]-1)*Zeta[1/2]*(PolyLog[1/2, -I]-Zeta[1/2, 1/4]) // Re // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 15 2013 *)
-
PARI
DirBet=sumalt(n=0, (-1)^n/sqrt(2*n+1)); print(4.0*(sqrt(2)-1)*zeta(0.5)*DirBet) ; \\ R. J. Mathar, Jul 20 2007
Formula
M2 = Sum_{ -oo < i < oo, -oo < j < oo, (i,j) != (0,0) } (-1)^(i + j)/sqrt(i^2 + j^2).
M2 = 4*(sqrt(2) - 1)*zeta(1/2)*beta(1/2) (beta=Dirichlet beta function).
Extensions
More terms from R. J. Mathar, Jul 20 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 10 2009