cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088537 Decimal expansion of Madelung's constant M2.

Original entry on oeis.org

1, 6, 1, 5, 5, 4, 2, 6, 2, 6, 7, 1, 2, 8, 2, 4, 7, 2, 3, 8, 6, 7, 9, 2, 3, 3, 3, 2, 7, 5, 8, 6, 1, 8, 0, 9, 0, 1, 9, 6, 4, 2, 2, 9, 2, 3, 6, 1, 3, 7, 7, 7, 1, 4, 5, 6, 9, 3, 7, 3, 5, 3, 5, 9, 6, 1, 2, 6, 5, 1, 2, 3, 1, 6, 1, 5, 3, 3, 3, 6, 2, 9, 0, 4, 1, 6, 5, 8, 9, 5, 5, 1, 7, 1, 8, 7, 2, 1, 4, 5, 5, 7, 4, 9, 0
Offset: 1

Views

Author

Benoit Cloitre, Nov 16 2003

Keywords

Examples

			M2 = -1.61554262671282472386792333275861809...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 76-81.

Crossrefs

Cf. A059750.

Programs

  • Maple
    M2:=evalf(4*(sqrt(2)-1)*Zeta(1/2)*sum('(-1)^n/sqrt(2*n+1)','n'=0..infinity),120); # Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 10 2009
  • Mathematica
    (2-2*I)*(Sqrt[2]-1)*Zeta[1/2]*(PolyLog[1/2, -I]-Zeta[1/2, 1/4]) // Re // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 15 2013 *)
  • PARI
    DirBet=sumalt(n=0, (-1)^n/sqrt(2*n+1)); print(4.0*(sqrt(2)-1)*zeta(0.5)*DirBet) ; \\ R. J. Mathar, Jul 20 2007

Formula

M2 = Sum_{ -oo < i < oo, -oo < j < oo, (i,j) != (0,0) } (-1)^(i + j)/sqrt(i^2 + j^2).
M2 = 4*(sqrt(2) - 1)*zeta(1/2)*beta(1/2) (beta=Dirichlet beta function).

Extensions

More terms from R. J. Mathar, Jul 20 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 10 2009