A088539 Decimal expansion of (4K/Pi)^2 where K is the Landau-Ramanujan constant.
9, 4, 6, 8, 0, 6, 4, 0, 7, 1, 8, 0, 0, 7, 9, 3, 3, 4, 2, 1, 6, 0, 9, 4, 4, 1, 3, 1, 0, 9, 7, 5, 6, 2, 3, 3, 2, 5, 0, 0, 6, 9, 5, 0, 2, 6, 4, 7, 1, 6, 5, 3, 1, 2, 1, 8, 1, 9, 7, 9, 5, 6, 5, 5, 3, 5, 8, 2, 0, 1, 0, 6, 6, 3, 9, 3, 6, 3, 7, 9, 2, 8, 1, 3, 9, 8, 9, 1, 3, 3, 0, 0, 4, 9, 9, 6, 2, 6, 0, 5, 2, 3, 4, 3
Offset: 0
Examples
0.9468064071800793342160944131097562332500695...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 100
Links
- W. Bosma and P. Stevenhagen, Density computations for real quadratic units, Math. comp. 65 (1996), 1327-1337; MR 96j : 11171.
Programs
-
Mathematica
digits = 104; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1-2^(-2^n)) * Zeta[2^n] / DirichletBeta[2^n])^(1/2^(n+1)), {n, 1, 24}, WorkingPrecision -> digits+5]; (4*LandauRamanujanK/Pi)^2 // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 04 2013, updated Mar 14 2018 *)
Formula
Equals prod(1-1/p^2) where p runs through the primes p==1 mod 4
Equals 1/A175647. - Vaclav Kotesovec, May 05 2020