A088565 Primes p such that the p-th digit in the decimal expansion of Pi is 1.
2, 41, 139, 149, 199, 239, 251, 397, 433, 439, 443, 491, 569, 599, 641, 647, 661, 787, 853, 883, 1031, 1087, 1097, 1153, 1187, 1319, 1423, 1613, 1619, 1637, 1657, 1667, 1697, 1759, 1789, 2081, 2129, 2143, 2221, 2239, 2459, 2633, 2689, 2741, 2753, 2777
Offset: 1
Examples
The 1st digit 1 in Pi is in the 2nd place of the digits 3,1,4,1,5,9,..., and 2 is prime, whence a(1) = 2. [Corrected and edited by _M. F. Hasler_, Jul 29 2024]
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[Flatten[Position[RealDigits[Pi,10,2800][[1]],1]],PrimeQ] (* Harvey P. Dale, May 05 2019 *)
-
PARI
pizeros(n,d) = { default(realprecision,5000); p = Pi; v = Vec(Str(p)); for(x=1,n, if(v[x] == Str(d) && isprime(x-1),print1(x-1",")) ) }
-
PARI
A088565_upto(N=3456, d=1)={localprec(N+20); [p|p<-primes([1, #N=digits(Pi\10^-N)]), N[p]==d]} \\ M. F. Hasler, Jul 29 2024