cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088565 Primes p such that the p-th digit in the decimal expansion of Pi is 1.

Original entry on oeis.org

2, 41, 139, 149, 199, 239, 251, 397, 433, 439, 443, 491, 569, 599, 641, 647, 661, 787, 853, 883, 1031, 1087, 1097, 1153, 1187, 1319, 1423, 1613, 1619, 1637, 1657, 1667, 1697, 1759, 1789, 2081, 2129, 2143, 2221, 2239, 2459, 2633, 2689, 2741, 2753, 2777
Offset: 1

Views

Author

Cino Hilliard, Nov 19 2003

Keywords

Examples

			The 1st digit 1 in Pi is in the 2nd place of the digits 3,1,4,1,5,9,..., and 2 is prime, whence a(1) = 2.  [Corrected and edited by _M. F. Hasler_, Jul 29 2024]
		

Crossrefs

Primes in A014976.
Cf. A088563, A088566 (the same for digits 0 and 2), A000796 (decimal digits of Pi).

Programs

  • Mathematica
    Select[Flatten[Position[RealDigits[Pi,10,2800][[1]],1]],PrimeQ] (* Harvey P. Dale, May 05 2019 *)
  • PARI
    pizeros(n,d) = { default(realprecision,5000); p = Pi; v = Vec(Str(p)); for(x=1,n, if(v[x] == Str(d) && isprime(x-1),print1(x-1",")) ) }
    
  • PARI
    A088565_upto(N=3456, d=1)={localprec(N+20); [p|p<-primes([1, #N=digits(Pi\10^-N)]), N[p]==d]} \\ M. F. Hasler, Jul 29 2024