A088567 Number of "non-squashing" partitions of n into distinct parts.
1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 18, 19, 24, 25, 31, 32, 40, 41, 50, 51, 63, 64, 77, 78, 95, 96, 114, 115, 138, 139, 163, 164, 194, 195, 226, 227, 266, 267, 307, 308, 357, 358, 408, 409, 471, 472, 535, 536, 612, 613, 690, 691, 785, 786, 881, 882, 995, 996, 1110, 1111
Offset: 0
Keywords
Examples
The partitions of n = 1 through 6 are: 1; 2; 3=1+2; 4=1+3; 5=1+4=2+3; 6=1+5=2+4=1+2+3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
- Amanda Folsom et al., On a general class of non-squashing partitions, Discrete Mathematics 339.5 (2016): 1482-1506.
- Y. Homma, J. H. Ryu, and B. Tong, Sequence non-squashing partitions, Slides from a talk, 2014.
- O. J. Rodseth and J. A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.
- N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
- N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a088567 n = a088567_list !! n a088567_list = 1 : tail xs where xs = 0 : 1 : zipWith (+) xs (tail $ concat $ transpose [xs, tail xs]) -- Reinhard Zumkeller, Nov 15 2012
-
Maple
f := proc(n) option remember; local t1,i; if n <= 2 then RETURN(1); fi; t1 := add(f(i),i=0..floor(n/2)); if n mod 2 = 0 then RETURN(t1-1); fi; t1; end; t1 := 1 + x/(1-x); t2 := add( x^(3*2^(k-1))/ mul( (1-x^(2^j)),j=0..k), k=1..10); series(t1+t2, x, 256); # increase 10 to get more terms
-
Mathematica
max = 63; f = 1 + x/(1-x) + Sum[x^(3*2^(k-1))/Product[(1-x^(2^j)), {j, 0, k}], {k, 1, Log[2, max]}]; s = Series[f, {x, 0, max}] // Normal; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 06 2014 *)
Formula
a(0)=1, a(1)=1; and for m >= 1, a(2m) = a(2m-1) + a(m) - 1, a(2m+1) = a(2m) + 1.
Or, a(0)=1, a(1)=1; and for m >= 1, a(2m) = a(0)+a(1)+...+a(m)-1; a(2m+1) = a(0)+a(1)+...+a(m).
G.f.: 1 + x/(1-x) + Sum_{k>=1} x^(3*2^(k-1))/Product_{j=0..k} (1-x^(2^j)).
Comments