cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088594 Number of 3-dimensional lattice paths running from (0,0,0) to (n,n,n), lying in {(x,y,z) : 0<=x<=y<=z} and using the steps (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1).

Original entry on oeis.org

1, 4, 44, 788, 18372, 505156, 15553372, 520065572, 18518471492, 692900847812, 26985709712524, 1086313382608436, 44960426477218436, 1905328431907938180, 82405332511166288572, 3627806131038258219076, 162218975410046793174404
Offset: 0

Views

Author

Robert A. Sulanke (sulanke(AT)math.boisestate.edu), Nov 20 2003

Keywords

Comments

These are the 3-dimensional analogs of the large Schröder numbers, A006318.
R(3,n) = 4*A105124(n) for n>0, where A105124 is the three-dimensional small Schröder numbers. - Paul D. Hanna, Apr 19 2005
Number of n X 3 semi-standard Young tableaux with consecutive entries. I.e., if j is in P, and 1<=i<=j, then i is in P. - Graham H. Hawkes, Feb 16 2015

Crossrefs

Programs

  • Maple
    1, seq( add( add(2*(-1)^(k-j)*binomial(3*n+1, k-j)* binomial(n+j,n)*binomial(n+j+1,n)*binomial(n+j+2,n)/(n+1)^2/(n+2), j = 0 .. k) *2^(k+2), k = 0 .. 2*n-2), n = 1 ..20 );
  • Mathematica
    Flatten[{1,Table[Sum[Sum[2*(-1)^(k-j)*Binomial[3*n+1,k-j]*Binomial[n+j,n]*Binomial[n+j+1,n]*Binomial[n+j+2,n]/(n+1)^2/(n+2),{j,0,k}]*2^(k+2),{k,0,2*n-2}],{n,1,20}]}] (* Vaclav Kotesovec, Aug 14 2013 *)
  • PARI
    {alias(C,binomial); R3(n)=if(n==0,1,sum(k=0,2*n-2, 2^(k+2)*sum(j=0,k, 2*(-1)^(k-j)*C(3*n+1,k-j)*C(n+j,n)*C(n+j+1,n)*C(n+j+2,n)/(n+1)^2/(n+2))))} \\ Paul D. Hanna, Apr 19 2005

Formula

For n => 1, R(3, n) := Sum[2^(k+2)*Sum[2*(-1)^(k-j)*C(3*n+1, k-j)* C(n+j, n)*C(n+j+1, n)*C(n+j+2, n)/(n+1)^2/(n+2), {j, 0, k}], {k, 0, 2*n-2}]. For n => 4, (3n-4)(n+2)(n+1)^2 R(3, n)(t) = (3n-2)(n+1)( 4(1+t+t^2) - 5(1+7t+t^2)n+3(1+7t+t^2)n^2 )R(3, n-1) - (n-2)( -12 +29n -30n^2 +9n^3)(1-t)^4 R(3, n-2) + (3n-1)(n-2)(n-3)(n-4) (1-t)^6 R(3, n-3).
G.f.: (1+2/x)*(1-1/x)*Int(((x-1)*(7*x^3-12*x^2+57*x+2)*hypergeom([1/3, 2/3],[1],54*x/(1-x)^3)-x*(x+5)*(x^2-8*x-11)*hypergeom([2/3, 4/3],[2],54*x/(1-x)^3))/(3*(x-1)^4*(x+2)^2),x)-(1+4*x)/(3*x). - Mark van Hoeij, Apr 16 2013
Recurrence: (n+1)^2*(n+2)*(3*n-4)*a(n) = (n+1)*(3*n-2)*(57*n^2 - 95*n + 28)*a(n-1) - (n-2)*(9*n^3 - 30*n^2 + 29*n - 12)*a(n-2) + (n-4)*(n-3)*(n-2)*(3*n-1)*a(n-3). - Vaclav Kotesovec, Aug 14 2013
a(n) ~ c*d^n/n^4, where d = 12*2^(2/3)+15*2^(1/3)+19 = 56.947628372... is the root of the equation d^3-57*d^2+3*d-1=0 and c = sqrt(4 + 10*2^(1/3)/3 + 8*2^(2/3)/3)/Pi = 1.122366540310337391196984583368763794289876... - Vaclav Kotesovec, Aug 14 2013, updated Mar 19 2015
In general, the number of SSYT of shape n X d with consecutive entries is given by:
[Prod_(i=1,d-1) (i/(n+i))^(d-1)] *
Sum_(j=0,n*(d-1)) [Prod_(i=0,d-1) (n+i+j choose n)*(Sum_(k=0,(n*(d-1)-j)) (-1)^k (n+j+k choose k)]. - Graham H. Hawkes, Feb 16 2015