A088594 Number of 3-dimensional lattice paths running from (0,0,0) to (n,n,n), lying in {(x,y,z) : 0<=x<=y<=z} and using the steps (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1).
1, 4, 44, 788, 18372, 505156, 15553372, 520065572, 18518471492, 692900847812, 26985709712524, 1086313382608436, 44960426477218436, 1905328431907938180, 82405332511166288572, 3627806131038258219076, 162218975410046793174404
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- R. A. Sulanke, Three-dimensional Narayana and Schröder numbers
- R. A. Sulanke, Generalizing Narayana and Schroeder Numbers to Higher Dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp. (see page 16).
Programs
-
Maple
1, seq( add( add(2*(-1)^(k-j)*binomial(3*n+1, k-j)* binomial(n+j,n)*binomial(n+j+1,n)*binomial(n+j+2,n)/(n+1)^2/(n+2), j = 0 .. k) *2^(k+2), k = 0 .. 2*n-2), n = 1 ..20 );
-
Mathematica
Flatten[{1,Table[Sum[Sum[2*(-1)^(k-j)*Binomial[3*n+1,k-j]*Binomial[n+j,n]*Binomial[n+j+1,n]*Binomial[n+j+2,n]/(n+1)^2/(n+2),{j,0,k}]*2^(k+2),{k,0,2*n-2}],{n,1,20}]}] (* Vaclav Kotesovec, Aug 14 2013 *)
-
PARI
{alias(C,binomial); R3(n)=if(n==0,1,sum(k=0,2*n-2, 2^(k+2)*sum(j=0,k, 2*(-1)^(k-j)*C(3*n+1,k-j)*C(n+j,n)*C(n+j+1,n)*C(n+j+2,n)/(n+1)^2/(n+2))))} \\ Paul D. Hanna, Apr 19 2005
Formula
For n => 1, R(3, n) := Sum[2^(k+2)*Sum[2*(-1)^(k-j)*C(3*n+1, k-j)* C(n+j, n)*C(n+j+1, n)*C(n+j+2, n)/(n+1)^2/(n+2), {j, 0, k}], {k, 0, 2*n-2}]. For n => 4, (3n-4)(n+2)(n+1)^2 R(3, n)(t) = (3n-2)(n+1)( 4(1+t+t^2) - 5(1+7t+t^2)n+3(1+7t+t^2)n^2 )R(3, n-1) - (n-2)( -12 +29n -30n^2 +9n^3)(1-t)^4 R(3, n-2) + (3n-1)(n-2)(n-3)(n-4) (1-t)^6 R(3, n-3).
G.f.: (1+2/x)*(1-1/x)*Int(((x-1)*(7*x^3-12*x^2+57*x+2)*hypergeom([1/3, 2/3],[1],54*x/(1-x)^3)-x*(x+5)*(x^2-8*x-11)*hypergeom([2/3, 4/3],[2],54*x/(1-x)^3))/(3*(x-1)^4*(x+2)^2),x)-(1+4*x)/(3*x). - Mark van Hoeij, Apr 16 2013
Recurrence: (n+1)^2*(n+2)*(3*n-4)*a(n) = (n+1)*(3*n-2)*(57*n^2 - 95*n + 28)*a(n-1) - (n-2)*(9*n^3 - 30*n^2 + 29*n - 12)*a(n-2) + (n-4)*(n-3)*(n-2)*(3*n-1)*a(n-3). - Vaclav Kotesovec, Aug 14 2013
a(n) ~ c*d^n/n^4, where d = 12*2^(2/3)+15*2^(1/3)+19 = 56.947628372... is the root of the equation d^3-57*d^2+3*d-1=0 and c = sqrt(4 + 10*2^(1/3)/3 + 8*2^(2/3)/3)/Pi = 1.122366540310337391196984583368763794289876... - Vaclav Kotesovec, Aug 14 2013, updated Mar 19 2015
In general, the number of SSYT of shape n X d with consecutive entries is given by:
[Prod_(i=1,d-1) (i/(n+i))^(d-1)] *
Sum_(j=0,n*(d-1)) [Prod_(i=0,d-1) (n+i+j choose n)*(Sum_(k=0,(n*(d-1)-j)) (-1)^k (n+j+k choose k)]. - Graham H. Hawkes, Feb 16 2015
Comments