A088595 Numbers n such that (A006530(n) + A020639(n))/2 is an integer, divides n and it is not a power of prime number: it has at least 2 distinct prime factors. Special terms of A088948.
105, 231, 315, 525, 627, 693, 735, 897, 935, 945, 1155, 1575, 1581, 1617, 1729, 1881, 2079, 2205, 2465, 2541, 2625, 2691, 2835, 2967, 3135, 3465, 3525, 3675, 4123, 4301, 4389, 4485, 4675, 4715, 4725, 4743, 4851, 5145, 5487, 5643, 5775, 6237, 6279, 6545
Offset: 1
Keywords
Examples
n = 315 = 3*3*5*7 is not a power of a prime, has 3 prime factors and (3+5)/2=7 divides n.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F; F:= numtheory:-factorset(n); nops(F) > 2 and n mod (min(F)+max(F))/2 = 0 end proc: select(filter, [seq(i,i=1..10^4,2)]); # Robert Israel, Nov 21 2016
-
Mathematica
Rest@ Select[Range@ 6600, Function[n, And[IntegerQ@ #, Divisible[n, #], ! PrimePowerQ@ n] &[(#[[-1, 1]] + #[[1, 1]])/2] &@ FactorInteger@ n]] (* Michael De Vlieger, Nov 24 2016 *)
Comments