A262723 Products of three distinct primes that form an arithmetic progression.
105, 231, 627, 897, 935, 1581, 1729, 2465, 2967, 4123, 4301, 4715, 5487, 7685, 7881, 9717, 10707, 11339, 14993, 16377, 17353, 20213, 20915, 23779, 25327, 26331, 26765, 29341, 29607, 32021, 33335, 40587, 40807, 42911, 48635, 49321, 54739, 55581, 55637, 59563, 60297, 63017
Offset: 1
Keywords
Examples
627 is in this sequence because 627=3*11*19, and 3, 11, 19 form an arithmetic progression (11-3 = 19-11).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@ 64000, And[SquareFreeQ@ #, PrimeOmega@ # == 3, Subtract @@ Differences[First /@ FactorInteger@ #] == 0] &] (* Michael De Vlieger, Sep 30 2015 *)
-
PARI
for(i=2,10^5,if(issquarefree(i)&&omega(i)==3,f=factor(i);if(f[1, 1]+f[3, 1]==2*f[2,1],print1(i,", "))))
-
PARI
list(lim)=my(v=List()); lim\=1; forstep(d=6,sqrtint(lim\10),6, forprime(p=d+5, solve(x=sqrtn(lim,3),d*sqrtn(lim,3), x^3-d^2*x-lim)+.5, if(isprime(p-d) && isprime(p+d), listput(v, p*(p-d)*(p+d))))); forprime(p=5,(sqrt(24*lim+81)-27)/12+3.5, if(isprime(2*p-3), listput(v,p*(2*p-3)*3))); Set(v) \\ Charles R Greathouse IV, Mar 16 2018
Extensions
New name from Peter Munn, Aug 27 2022
Comments