A294751 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 4.
2145, 4641, 4845, 5005, 9177, 11305, 13485, 13585, 17017, 21489, 21505, 23529, 26445, 31465, 31857, 33649, 35409, 35581, 36685, 42441, 43401, 46189, 46345, 49569, 50065, 53985, 60697, 61705, 63085, 63597, 65569, 67821, 69745, 77745, 80845, 83049, 87505, 88881
Offset: 1
Keywords
Examples
2145 = 3*5*11*13. Prime factors average is (3 + 5 + 11 + 13)/4 = 8 and 3 + 5 = 8 = 13 - 5, 5 + 3 = 8 = 11 - 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): P:=proc(q,h) local a,b,k,n,ok; for n from 2*3*5*7 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2]; if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1; for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,4); # Alternative: N:= 10^5: # to get terms <= N M:= floor(max(fsolve(3*5*(M-5)*(M-3) = N))): P:= select(isprime, [seq(i,i=3..M/2,2)]): nP:= nops(P): Res:= NULL: for m from 10 by 2 to M do for ix from 1 to nP-2 do x:= P[ix]; if x >= m/2 or (x*(m-x))^2 >= N then break fi; if not isprime(m-x) then next fi; for iy from ix+1 to nP-1 do y:= P[iy]; if y >= m/2 or x*(m-x)*y*(m-y) >= N then break fi; if not isprime(m-y) then next fi; Res:= Res, x*(m-x)*y*(m-y); od od od: sort([Res]); # Robert Israel, May 19 2019
-
PARI
isok(n, nb=4) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ Michel Marcus, Nov 10 2017
Extensions
More terms from Giovanni Resta, Nov 09 2017
Comments