cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A294751 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 4.

Original entry on oeis.org

2145, 4641, 4845, 5005, 9177, 11305, 13485, 13585, 17017, 21489, 21505, 23529, 26445, 31465, 31857, 33649, 35409, 35581, 36685, 42441, 43401, 46189, 46345, 49569, 50065, 53985, 60697, 61705, 63085, 63597, 65569, 67821, 69745, 77745, 80845, 83049, 87505, 88881
Offset: 1

Views

Author

Paolo P. Lava, Nov 08 2017

Keywords

Examples

			2145 = 3*5*11*13. Prime factors average is (3 + 5 + 11 + 13)/4 = 8 and 3 + 5 = 8 = 13 - 5, 5 + 3 = 8 = 11 - 3.
		

Crossrefs

Subsequence of A046386.
Cf. A006881 (k=2), A262723 (k=3), A294752 (k=5), A294776 (k=6).

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,k,n,ok;
    for n from 2*3*5*7 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2];
    if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1;
    for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,4);
    # Alternative:
    N:= 10^5: # to get terms <= N
    M:= floor(max(fsolve(3*5*(M-5)*(M-3) = N))):
    P:= select(isprime, [seq(i,i=3..M/2,2)]): nP:= nops(P):
    Res:= NULL:
    for m from 10 by 2 to M do
      for ix from 1 to nP-2 do
        x:= P[ix];
        if x >= m/2 or (x*(m-x))^2 >= N then break fi;
        if not isprime(m-x) then next fi;
        for iy from ix+1 to nP-1 do
          y:= P[iy];
          if y >= m/2 or x*(m-x)*y*(m-y) >= N then break fi;
          if not isprime(m-y) then next fi;
          Res:= Res, x*(m-x)*y*(m-y);
    od od od:
    sort([Res]); # Robert Israel, May 19 2019
  • PARI
    isok(n, nb=4) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ Michel Marcus, Nov 10 2017

Extensions

More terms from Giovanni Resta, Nov 09 2017

A294776 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 6.

Original entry on oeis.org

1616615, 3411705, 7436429, 9408035, 10163195, 12838371, 13037385, 13844919, 14969435, 19605131, 20414121, 23783045, 24997749, 25113935, 27568145, 30478565, 31473255, 32518535, 33999455, 39946569, 43134015, 46115135, 48215255, 50907855, 56179409, 61558343
Offset: 1

Views

Author

Paolo P. Lava, Nov 09 2017

Keywords

Crossrefs

Subsequence of A067885.
Cf. A006881 (k=2), A262723 (k=3), A294751 (k=4), A294752 (k=5).

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,k,n,ok;
    for n from 2*3*5*7*11*13 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2];
    if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1;
    for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,6);
    # Alternative:
    N:= 10^8: # to get all terms <= N
    M:= floor(fsolve(3*5*7*(M-7)*(M-5)*(M-3) = N)):
    P:= select(isprime, [seq(i,i=3..M/2,2)]): nP:= nops(P):
    Res:= NULL:
    for m from 10 by 2 to M do
      for ix from 1 to nP-2 do
        x:= P[ix];
        if x >= m/2 or (x*(m-x))^3 >= N then break fi;
        if not isprime(m-x) then next fi;
        for iy from ix+1 to nP-1 do
          y:= P[iy];
          if y >= m/2 or x*(m-x)*(y*(m-y))^2 >= N then break fi;
          if not isprime(m-y) then next fi;
          for iz from iy+1 to nP do
            z:= P[iz];
            if z >= m/2 then break fi;
            v:= x*(m-x)*y*(m-y)*z*(m-z);
            if v > N then break fi;
            if isprime(m-z) then Res:= Res, v fi;
    od od od od:
    sort([Res]); # Robert Israel, May 19 2019
  • PARI
    isok(n, nb=6) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ Michel Marcus, Nov 10 2017

Extensions

More terms from Giovanni Resta, Nov 09 2017

A294906 a(n) is the least squarefree integer, product of n primes that are symmetrically distributed around their average.

Original entry on oeis.org

2, 6, 105, 2145, 53295, 1616615, 57998985, 3038795305, 3907126810041, 7292509103495, 66240019730740785, 82246340873964085, 1870667082297874652055, 343515424581301546805, 9160656702012692171113335, 2356596317899272514936585, 1903895854998638367242867256645
Offset: 1

Views

Author

Michel Marcus, Nov 10 2017

Keywords

Examples

			The prime factors of the first terms are: [2], [2, 3], [3, 5, 7], [3, 5, 11, 13], [3, 5, 11, 17, 19], [5, 7, 11, 13, 17, 19], [3, 5, 11, 17, 23, 29, 31], ...
		

Crossrefs

Programs

  • PARI
    isok(n, nb) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););}
    a(n) = {my(k = prod(i=1, n, prime(i))); while (! isok(k, n), k++); k;}

Extensions

a(8)-a(17) from Giovanni Resta, Nov 10 2017
Showing 1-3 of 3 results.