A088660 A logarithmic scale Sierpinski self-similar sequence.
7, 8, 6, 7, 6, 8, 5, 6, 5, 7, 5, 6, 5, 8, 4, 5, 4, 6, 4, 5, 4, 7, 4, 5, 4, 6, 4, 5, 4, 8, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 7, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 8, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2
Offset: 3
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 3..5000
Crossrefs
Programs
-
Mathematica
p[n_, k_]:= Sum[Log[i], {i, 1, n}]/Sum[Log[i], {i, 1, n-Floor[n/2^k]}]; f[n_]=Sum[Floor[p[n, k]/p[n-1, k]], {k, 1, 8}]; Table[f[n], {n, 3, 100}]
Formula
With p(n, k) = log(n!) / log((n-floor(n/2^k))!) then a(n) = Sum_{k=1..8} floor(p(n, k)/p(n-1, k)) for n>2.