A088674 Coefficients of the eigenfunction of a sequence transformation.
1, 3, 6, 45, 126, 750, 2796, 19389, 75894, 449562, 2027796, 12211794, 57895596, 332787324, 1677545304, 9766642077, 50378641830, 286825948194, 1529968671492, 8729259097158, 47374697101572, 269062276076868, 1484430536591592
Offset: 0
Keywords
Examples
G.f. = A(x) = 1 + 3*x + 6*x^2 + 45*x^3 + 126*x^4 + 750*x^5 + 2796*x^6 + ... B(x) = 1/(2*x) - x - 3*x^3 - 6*x^5 - 45*x^7 - 126*x^9 - 750*x^11 - ... - _Michael Somos_, Jul 11 2019
Programs
-
Mathematica
a[ n_] := If[n < 0, 0, Module[{A = 1 + O[x], m = 2}, While[m < n + 2, m *= 2; A = (Normal[ 1/x - Sqrt[ 1/x^2 - 2/x - 2*(Normal[A] /. x -> x^2) + O[x]^(m - 2)]] /. x -> 2*x) + O[x]^(m - 1) //PowerExpand]; SeriesCoefficient[A, n]]]; (* Michael Somos, Jun 07 2021 *)
-
PARI
{a(n) = my(A, m); if( n < 0, 0, m=2; A = 1 + O(x); while( m < n+2, m*=2; A = subst(1/x - sqrt(2*(subst((1/2)/x - A, x, x^2) - 1/x)), x, 2*x)); polcoeff(A, n))};
Comments