cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088687 Numbers that can be represented as j^4 + k^4, with 0 < j < k, in exactly one way.

Original entry on oeis.org

17, 82, 97, 257, 272, 337, 626, 641, 706, 881, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8962, 10001, 10016, 10081, 10256, 10625, 10657, 11296
Offset: 1

Views

Author

Cino Hilliard, Nov 22 2003

Keywords

Examples

			17 = 1^4 + 2^4.
635318657 = 133^4 + 134^4 is absent because it is also 59^4 + 158^4 (see A046881, A230562)
		

Crossrefs

Programs

  • Maple
    N:= 2*10^4: # for terms <= N
    V:= Vector(N):
    for j from 1 while 2*j^4 < N do
      for k from j+1 do
        r:= j^4 + k^4;
        if r > N then break fi;
        V[r]:= V[r]+1;
    od od:
    select(t -> V[t] = 1, [$1..N]); $ Robert Israel, Dec 15 2019
  • Mathematica
    lst={};Do[Do[x=a^4;Do[y=b^4;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/4)],a+1,-1}],{a,Floor[n^(1/4)],1,-1}],{n,4*7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)
  • PARI
    powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k",")) ); } powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }

Extensions

Edited by Don Reble, May 03 2006