A088687 Numbers that can be represented as j^4 + k^4, with 0 < j < k, in exactly one way.
17, 82, 97, 257, 272, 337, 626, 641, 706, 881, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8962, 10001, 10016, 10081, 10256, 10625, 10657, 11296
Offset: 1
Keywords
Examples
17 = 1^4 + 2^4. 635318657 = 133^4 + 134^4 is absent because it is also 59^4 + 158^4 (see A046881, A230562)
Links
- Robert Israel, Table of n, a(n) for n = 1..4500
Programs
-
Maple
N:= 2*10^4: # for terms <= N V:= Vector(N): for j from 1 while 2*j^4 < N do for k from j+1 do r:= j^4 + k^4; if r > N then break fi; V[r]:= V[r]+1; od od: select(t -> V[t] = 1, [$1..N]); $ Robert Israel, Dec 15 2019
-
Mathematica
lst={};Do[Do[x=a^4;Do[y=b^4;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/4)],a+1,-1}],{a,Floor[n^(1/4)],1,-1}],{n,4*7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)
-
PARI
powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k",")) ); } powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }
Extensions
Edited by Don Reble, May 03 2006