cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088688 Binomial transform of A088689.

Original entry on oeis.org

0, 1, 3, 6, 12, 27, 63, 141, 297, 594, 1146, 2169, 4095, 7827, 15291, 30582, 62256, 127791, 262143, 534129, 1078101, 2156202, 4282878, 8477181, 16777215, 33288711, 66311703, 132623406, 266043972, 534479427, 1073741823, 2154658101
Offset: 0

Views

Author

Paul Barry, Oct 06 2003

Keywords

Crossrefs

Cf. A001045.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * Mod[k*Floor[3*(k+1)/2] - 2*k, 3], {k, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Oct 30 2017 *)
    CoefficientList[Series[-x(1-3x+3x^2+x^3)/((2x-1)(x^2-x+1)(3x^2-3x+1)),{x,0,40}],x] (* or *) LinearRecurrence[{6,-15,20,-15,6},{0,1,3,6,12},40] (* Harvey P. Dale, Aug 28 2025 *)

Formula

a(n) = 2^n - cos(Pi*n/3) - 3^(n/2)*sin(Pi*n/6)/sqrt(3).
O.g.f.: -x(1-3x+3x^2+x^3)/[(2x-1)(x^2-x+1)(3x^2-3x+1)]. - R. J. Mathar, Apr 02 2008