A088688 Binomial transform of A088689.
0, 1, 3, 6, 12, 27, 63, 141, 297, 594, 1146, 2169, 4095, 7827, 15291, 30582, 62256, 127791, 262143, 534129, 1078101, 2156202, 4282878, 8477181, 16777215, 33288711, 66311703, 132623406, 266043972, 534479427, 1073741823, 2154658101
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6).
Crossrefs
Cf. A001045.
Programs
-
Mathematica
Table[Sum[Binomial[n,k] * Mod[k*Floor[3*(k+1)/2] - 2*k, 3], {k, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Oct 30 2017 *) CoefficientList[Series[-x(1-3x+3x^2+x^3)/((2x-1)(x^2-x+1)(3x^2-3x+1)),{x,0,40}],x] (* or *) LinearRecurrence[{6,-15,20,-15,6},{0,1,3,6,12},40] (* Harvey P. Dale, Aug 28 2025 *)
Formula
a(n) = 2^n - cos(Pi*n/3) - 3^(n/2)*sin(Pi*n/6)/sqrt(3).
O.g.f.: -x(1-3x+3x^2+x^3)/[(2x-1)(x^2-x+1)(3x^2-3x+1)]. - R. J. Mathar, Apr 02 2008