cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088705 First differences of A000120. One minus exponent of 2 in n.

Original entry on oeis.org

0, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -3, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -4, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -3, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -5, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -3, 1, 0, 1
Offset: 0

Views

Author

Ralf Stephan, Oct 10 2003

Keywords

Comments

The number of 1's in the binary expansion of n+1 minus the number of 1's in the binary expansion of n.

Crossrefs

Programs

  • Haskell
    a088705 n = a088705_list !! n
    a088705_list = 0 : zipWith (-) (tail a000120_list) a000120_list
    -- Reinhard Zumkeller, Dec 11 2011
    
  • Maple
    add(x^(2^k)/(1+x^(2^k)),k=0..20); series(%,x,1001); seriestolist(%); # To get up to a million terms, from N. J. A. Sloane, Aug 31 2014
  • Mathematica
    a[n_] := If[n<1, 0, If[Mod[n, 2] == 0, a[n/2] - 1, 1]]; Array[a, 60, 0] (* Amiram Eldar, Nov 26 2018 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)-1,1))
    
  • PARI
    a(n)=if(n<1,0,1-valuation(n,2))
    
  • Python
    def A088705(n): return 1-(~n & n-1).bit_length() # Chai Wah Wu, Sep 18 2024

Formula

For n > 0: a(n) = A000120(n) - A000120(n-1) = 1 - A007814(n).
Multiplicative with a(2^e) = 1-e, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005
G.f.: Sum{k>=0} t/(1+t), t=x^2^k.
a(0) = 0, a(2*n) = a(n) - 1, a(2*n+1) = 1.
Let T(x) be the g.f., then T(x)-T(x^2)=x/(1+x). - Joerg Arndt, May 11 2010
Dirichlet g.f.: zeta(s) * (2-2^s)/(1-2^s). - Amiram Eldar, Sep 18 2023