A088748 a(n) = 1 + Sum_{k=0..n-1} 2 * A014577(k) - 1.
1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 6, 7, 6, 7, 8, 7, 6, 5, 6, 7, 6, 5, 6, 5, 4, 3, 4, 5, 4, 5, 6
Offset: 0
Keywords
Examples
The first 8 terms of the sequence = (1, 2, 3, 2, 3, 4, 3, 2), where the first four terms = (1, 2, 3, 2). Reverse, add 1, getting (3, 4, 3, 2), then append. The sequence begins with "1", then using the dragon curve coding, we get: 1...2...3...2...3...4... = A088748 ....1...1...0...1...1... = A014577, the dragon curve.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16383
- J.-P. Allouche, G.-N. Han, and J. Shallit, On some conjectures of P. Barry, arXiv:2006.08909 [math.NT], 2020.
- J.-P. Allouche and J. Shallit, On three conjectures of P. Barry, arxiv preprint arXiv:2006.04708 [math.NT], June 8 2020.
- Paul Barry, Some observations on the Rueppel sequence and associated Hankel determinants, arXiv:2005.04066 [math.CO], 2020.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
Programs
-
Mathematica
Array[1 + Sum[2 (1 - (((Mod[#1, 2^(#2 + 2)]/2^#2)) - 1)/2) - 1 &[k, IntegerExponent[k, 2]], {k, # - 1}] &, 102] (* Michael De Vlieger, Aug 26 2020 *)
Formula
a(n) = 1 + A005811(n). [Joerg Arndt, Dec 11 2012]
Extensions
Edited by Don Reble, Nov 15 2005
Additional comments from Gary W. Adamson, Aug 30 2009
Edited by N. J. A. Sloane, Sep 06 2009
Comments