cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088748 a(n) = 1 + Sum_{k=0..n-1} 2 * A014577(k) - 1.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 6, 7, 6, 7, 8, 7, 6, 5, 6, 7, 6, 5, 6, 5, 4, 3, 4, 5, 4, 5, 6
Offset: 0

Views

Author

Gary W. Adamson, Oct 14 2003

Keywords

Comments

Let s(0)=1; s(n+1)=s(n),ri(n), where ri(n) is s(n) reversed and incremented. Each s(n) is an initial part of this sequence.
For each m, a(1 to 2^m) is a permutation of A063787(1 to 2^m). For k=1 to 2^m, a(2^m+1-A088372(m,k)) = A063787(k).
Partial sums give A164910: (1, 3, 6, 8, 11, 15, 20, ...).
a(0) = 1, then using the dragon curve sequence A014577: (1, 1, 0, 1, 1, ...) as a code: (1 = add to current term, 0 = subtract from current term, to get the next term), see example.
Rows of A088696 tend to this sequence.

Examples

			The first 8 terms of the sequence = (1, 2, 3, 2, 3, 4, 3, 2), where the first four terms = (1, 2, 3, 2). Reverse, add 1, getting (3, 4, 3, 2), then append.
The sequence begins with "1", then using the dragon curve coding, we get:
1...2...3...2...3...4... = A088748
....1...1...0...1...1... = A014577, the dragon curve.
		

Crossrefs

Programs

  • Mathematica
    Array[1 + Sum[2 (1 - (((Mod[#1, 2^(#2 + 2)]/2^#2)) - 1)/2) - 1 &[k, IntegerExponent[k, 2]], {k, # - 1}] &, 102] (* Michael De Vlieger, Aug 26 2020 *)

Formula

a(n) = 1 + A005811(n). [Joerg Arndt, Dec 11 2012]

Extensions

Edited by Don Reble, Nov 15 2005
Additional comments from Gary W. Adamson, Aug 30 2009
Edited by N. J. A. Sloane, Sep 06 2009