1, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5, 6
Offset: 1
Fractions in the left branch of the infinite Stern-Brocot tree (the fractions between 0 and 1), are:
1/2;
1/3, 2/3;
1/4, 2/5, 3/5, 3/4;
1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5;
...
and their corresponding continued fraction representations are:
[2]
[3] [1,2]
[4] [2,2] [1,1,2] [1,3]
[5] [3,2] [2,1,2] [2,3] [1,1,3] [1,1,1,2] [1,2,2] [1,4]
...
with the number of terms in each continued fraction representation generating the present triangle:
1
1 2
1 2 3 2
1 2 3 2 3 4 3 2
...
Comments