A164056 Triangle of 2^n terms by rows, derived from A088696 as to length of continued fractions, lengths increase = 1, decrease = 0. A088696 can be generated using the following algorithm: Rows 0 and 1 begin 1; 1,2; then for all further rows, bring down current row then append to the right: (1 added to each term in current row). Row 2 (1, 2, 3, 2) then becomes: (1, 2, 3, 2, 3, 4, 3, 2).
0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0
Offset: 0
Examples
A088696 begins: 1; 1, 2; 1, 2, 3, 2; 1, 2, 3, 2, 3, 4, 3, 2; ... Triangle A164056 = 0; 0, 1; 0, 1, 1, 0; 0, 1, 1, 0, 1, 1, 0, 0; 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0; ...
Links
- Jon Maiga, Table of n, a(n) for n = 0..1022 (Rows 0..9)
Programs
Formula
Extensions
More terms from Jon Maiga, Sep 30 2019
Keyword tabf from Michel Marcus, Sep 30 2019
Comments