A088751 Decimal expansion of -x, the real root of the equation 0 = 1 + Sum_{k>=1} prime(k) x^k. The inverse of Backhouse's constant (A072508).
6, 8, 6, 7, 7, 7, 8, 3, 4, 4, 6, 0, 6, 3, 4, 9, 5, 4, 4, 2, 6, 5, 4, 0, 2, 2, 3, 7, 0, 6, 7, 6, 9, 2, 6, 9, 2, 2, 7, 0, 0, 2, 6, 3, 7, 6, 2, 2, 5, 0, 4, 2, 0, 7, 3, 9, 3, 4, 2, 5, 8, 2, 9, 4, 0, 1, 1, 5, 3, 1, 0, 0, 8, 7, 7, 0, 0, 4, 3, 7, 3, 6, 6, 9, 6, 9, 5, 3, 0, 1, 0, 6, 7, 6, 8, 2, 5, 9, 0, 1
Offset: 0
Examples
0.68677783446063...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.5, p. 294.
Links
- S. R. Finch, Backhouse's constant, 1995. [Cached copy, with permission]
- Philippe Flajolet, in response to the previous document from S. R. Finch, Backhouse's constant, 1995.
- S. R. Finch, Kalmar's Composition Constant, Section 5.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 292-295, 2003. [Cached copy, with permission]
- S. R. Finch, Kalmar's composition constant, June 5, 2003. [A different version. Cached copy, with permission of the author]
- Eric Weisstein's World of Mathematics, Backhouse's Constant.
Programs
-
Mathematica
RealDigits[ -x/.FindRoot[0==1+Sum[x^n Prime[n], {n, 1000}], {x, {0, 1}}, WorkingPrecision->100]][[1]]
Comments