cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367387 Expansion of g.f. A(x) satisfying A(x)^2 = A(x*A(x)) / (1-x) with A(0) = 0.

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 34, 77, 193, 472, 1214, 3099, 8122, 21293, 56666, 151261, 407519, 1102006, 2998716, 8189515, 22467935, 61841586, 170818016, 473173219, 1314463002, 3660532769, 10218207713, 28584456783, 80124502593, 225011930357, 633003693094, 1783658958681, 5033641233827
Offset: 1

Views

Author

Paul D. Hanna, Jan 08 2024

Keywords

Comments

Note that if F(x)^2 = (1+x) * F(x*F(x)) with F(0) = 1, then F(x) is the g.f. of A088792.

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 14*x^6 + 34*x^7 + 77*x^8 + 193*x^9 + 472*x^10 + 1214*x^11 + 3099*x^12 + 8122*x^13 + 21293*x^14 + 56666*x^15 + ...
where A(x)^2 = A(x*A(x)) / (1-x) as can be seen from the following expansions
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 10*x^5 + 24*x^6 + 54*x^7 + 133*x^8 + 320*x^9 + 809*x^10 + 2038*x^11 + 5278*x^12 + 13702*x^13 + 36144*x^14 + 95758*x^15 + ...
A(x*A(x)) = x^2 + x^3 + 3*x^4 + 5*x^5 + 14*x^6 + 30*x^7 + 79*x^8 + 187*x^9 + 489*x^10 + 1229*x^11 + 3240*x^12 + 8424*x^13 + 22442*x^14 + 59614*x^15 + ...
Let B(x) = x*A(x), then A(x) equals the infinite product involving successive iterations of B(x) starting with
A(x) = x/(1-x) / ( (1 - B(x)) * (1 - B(B(x))) * (1 - B(B(B(x)))) * (1 - B(B(B(B(x))))) * ...)
which is equivalent to
A(x) = x*(1-x) / ( (1 - x*A(x)) * (1 - x*A(x) * A(x*A(x))) * (1 - x*A(x) * A(x*A(x)) * A(x*A(x) * A(x*A(x)))) * ...).
RELATED SERIES.
Successive iterations of B(x) = x*A(x) begin
B(x) = x^2 + x^3 + 2*x^4 + 3*x^5 + 7*x^6 + 14*x^7 + 34*x^8 + 77*x^9 + ...
B(B(x)) = x^4 + 2*x^5 + 6*x^6 + 13*x^7 + 35*x^8 + 84*x^9 + 221*x^10 + ...
B(B(B(x))) = x^8 + 4*x^9 + 16*x^10 + 50*x^11 + 159*x^12 + 470*x^13 + ...
B(B(B(B(x)))) = x^16 + 8*x^17 + 48*x^18 + 228*x^19 + 974*x^20 + 3812*x^21 + ...
B(B(B(B(B(x))))) = x^32 + 16*x^33 + 160*x^34 + 1224*x^35 + 7900*x^36 + ...
etc.
The coefficients in the iterations of x*A(x) form a table that begins
n=1: [1, 1, 2, 3, 7, 14, 34, 77, 193, 472, 1214, 3099, ...];
n=2: [1, 2, 6, 13, 35, 84, 221, 556, 1464, 3801, 10107, ...];
n=3: [1, 4, 16, 50, 159, 470, 1397, 4033, 11656, 33284, ...];
n=4: [1, 8, 48, 228, 974, 3812, 14142, 50182, 172562, ...];
n=5: [1, 16, 160, 1224, 7900, 45096, 234764, 1136732, ...];
n=6: [1, 32, 576, 7568, 80568, 734672, 5938776, ...];
n=7: [1, 64, 2176, 52000, 977264, 15344032, 208985520, ...];
n=8: [1, 128, 8448, 382528, 13345504, 382081856, ...];
n=9: [1, 256, 33280, 2927744, 195986880, 10643805824, ...];
n=10: [1, 512, 132096, 22894848, 2998537088, 316503534848, ...];
etc.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x, V=[0,1]); for(i=1,n, V = concat(V,0); A = Ser(V);
    V[#V] = polcoeff( subst(A,x,x*A) - (1-x)*A^2, #V) ); V[n+1]}
    for(n=1,40, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n and B(x) = x*A(x) satisfies the following formulas.
(1) A(x)^2 = A(x*A(x)) / (1-x).
(2) A(x) = x/(1-x) / ( (1 - B(x)) * (1 - B(B(x))) * (1 - B(B(B(x)))) * (1 - B(B(B(B(x))))) * ...), an infinite product involving iterations of B(x) = x*A(x).
The iterations of B(x) = x*A(x) begin
(3.a) B(B(x)) = x*(1-x) * A(x)^3.
(3.b) B(B(B(x))) = x*(1-x)^3 * (1 - x*A(x)) * A(x)^7.
(3.c) B(B(B(B(x)))) = x*(1-x)^7 * (1 - x*A(x))^3 * (1 - x*(1-x)*A(x)^3) * A(x)^15.
(3.d) B(B(B(B(B(x))))) = x*(1-x)^15 * (1 - x*A(x))^7 * (1 - x*(1-x)*A(x)^3)^3 * (1 - x*(1-x)^3*(1-x*A(x))*A(x)^7) * A(x)^31.
The compositions of g.f. A(x) with the iterations of B(x) = x*A(x) begin
(4.a) A(B(x)) = (1-x) * A(x)^2.
(4.b) A(B(B(x))) = (1-x)^2 * (1 - x*A(x)) * A(x)^4.
(4.c) A(B(B(B(x)))) = (1-x)^4 * (1 - x*A(x))^2 * (1 - x*(1-x)*A(x)^3) * A(x)^8.
(4.d) A(B(B(B(B(x))))) = (1-x)^8 * (1 - x*A(x))^4 * (1 - x*(1-x)*A(x)^3)^2 * (1 - x*(1-x)^3*(1-x*A(x))*A(x)^7) * A(x)^16.

A120056 Expansion of g.f. A(x) satisfying A(x)^2 = (1+x) * A(x*A(x)) with A(0) = 1.

Original entry on oeis.org

1, 1, 1, 3, 14, 91, 737, 7096, 78766, 987842, 13797282, 212285511, 3567147508, 65001800879, 1276876433466, 26901212485406, 605144725934525, 14477882030623891, 367106501841287465, 9834718739970491625
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2006

Keywords

Comments

Note that if F(x)^2 = (1+x) * F(x*F(x)) with F(0) = 0, then F(x) is the g.f. of A367386. - Paul D. Hanna, Jan 08 2024

Examples

			A(x) = 1 + x + x^2 + 3*x^3 + 14*x^4 + 91*x^5 + 737*x^6 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 8*x^3 + 35*x^4 + 216*x^5 + 1693*x^6 +...
A(x*A(x)) = 1 + x + 2*x^2 + 6*x^3 + 29*x^4 + 187*x^5 + 1506*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A); if(n<1, n==0, A=1+x; for(i=1,n, A=subst(A,x,x*A+x*O(x^n))*(1+x)/A); polcoeff(A, n))}

Formula

a(n) ~ c * n^n / (exp(n) * (log(2))^n), where c = 0.8876659274678... . - Vaclav Kotesovec, Aug 08 2014
From Paul D. Hanna, Jan 08 2024: (Start)
G.f. A(x) = Sum_{n>=0} a(n)*x^n and B(x) = x*A(x) and B(x) = x*A(x) satisfy the following formulas.
(1) A(x)^2 = (1+x) * A(x*A(x)).
(2) A(x) = (1+x)^(1/2) * (1 + B(x))^(1/4) * (1 + B(B(x)))^(1/8) * (1 + B(B(B(x))))^(1/16) * (1 + B(B(B(B(x)))))^(1/32) * ..., an infinite product involving iterations of B(x) = x*A(x).
(3.a) B(B(x)) = x*A(x)^3 / (1+x).
(3.b) B(B(B(x))) = x*A(x)^7 / ((1+x)^3 * (1 + x*A(x))).
(3.c) B(B(B(B(x)))) = x*A(x)^15 / ((1+x)^7 * (1 + x*A(x))^3 * (1 + x*A(x)^3/(1+x))).
(3.d) B(B(B(B(B(x))))) = x*A(x)^31 / ((1+x)^15 * (1+x*A(x))^7 * (1 + x*A(x)^3/(1+x))^3 * (1 + x*A(x)^7/((1+x)^3*(1+x*A(x))))).
The compositions of g.f. A(x) with the iterations of B(x) = x*A(x) begin
(4.a) A(B(x)) = A(x)^2 / (1+x).
(4.b) A(B(B(x))) = A(x)^4 / ((1+x)^2 * (1 + x*A(x))).
(4.c) A(B(B(B(x)))) = A(x)^8 / ((1+x)^4 * (1 + x*A(x))^2 * (1 + x*A(x)^3/(1+x))).
(4.d) A(B(B(B(B(x))))) = A(x)^16 / ((1+x)^8 * (1+x*A(x))^4 * (1 + x*A(x)^3/(1+x))^2 * (1 + x*A(x)^7/((1+x)^3*(1+x*A(x))))).
(End)
Showing 1-2 of 2 results.