cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088837 Numerator of sigma(2*n)/sigma(n). Denominator see in A038712.

Original entry on oeis.org

3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 127, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 255, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Comments

In general sigma(2^k*n) / sigma(n) = ((2^k*n) XOR (2^k*n-1)) / (n XOR (n-1)), see link. Jon Maiga, Dec 10 2018

Crossrefs

Programs

  • Maple
    nmax:=93: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^(p+2)-1 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 09 2013
  • Mathematica
    k=2; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
    Table[BitXor[2*n, 2*n - 1], {n, 128}] (* Jon Maiga, Dec 10 2018 *)
  • PARI
    A088837(n) = numerator(sigma(n<<1)/sigma(n)); \\ Antti Karttunen, Nov 01 2018

Formula

a(n) = 4*2^A007814(n)-1 = 4*A006519(n)-1 = A059159(n)-1 = 2*A038712(n) + 1.
a((2*n-1)*2^p) = 2^(p+2)-1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 09 2013
a(n) = (2n) XOR (2n-1). - Jon Maiga, Dec 10 2018
From Amiram Eldar, Jan 06 2023: (Start)
a(n) = numerator(A062731(n)/A000203(n)).
Sum_{k=1..n} a(k) ~ (log_2(n) + (gamma-1)/log(2) + 1)*2*n, where gamma is Euler's constant (A001620).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A038712(k) = A065442 + 1 = 2.606695... . (End).