A088837 Numerator of sigma(2*n)/sigma(n). Denominator see in A038712.
3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 127, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 255, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Jon Maiga, Efficient computation of ratios between divisor sums, 2018.
- Index entries for sequences related to sigma(n).
Crossrefs
Programs
-
Maple
nmax:=93: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^(p+2)-1 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 09 2013
-
Mathematica
k=2; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}] Table[BitXor[2*n, 2*n - 1], {n, 128}] (* Jon Maiga, Dec 10 2018 *)
-
PARI
A088837(n) = numerator(sigma(n<<1)/sigma(n)); \\ Antti Karttunen, Nov 01 2018
Formula
a((2*n-1)*2^p) = 2^(p+2)-1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 09 2013
a(n) = (2n) XOR (2n-1). - Jon Maiga, Dec 10 2018
From Amiram Eldar, Jan 06 2023: (Start)
Sum_{k=1..n} a(k) ~ (log_2(n) + (gamma-1)/log(2) + 1)*2*n, where gamma is Euler's constant (A001620).
Comments