cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088854 a(n) = (2^(n-1))*(Integral_{x=0..1} (1+x^2)^n dx)/(Integral_{x=0..1} (1-x^2)^n dx).

Original entry on oeis.org

2, 7, 24, 83, 292, 1046, 3808, 14051, 52412, 197202, 747120, 2846318, 10892936, 41844172, 161247104, 623034403, 2412871916, 9363311482, 36399254864, 141721774138, 552572485496, 2157194452852, 8431104269504, 32986010380558, 129177323979992, 506313914434036, 1986097541692128
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Nov 24 2003

Keywords

Examples

			a(3) = 24.
		

Crossrefs

Cf. A082590.

Programs

  • Maple
    A088854 := n -> 2^(n-1)*JacobiP(n, 1/2, -1 - n, 3):
    seq(simplify(A088854(n)), n = 1..26);  # Peter Luschny, Jan 22 2025
  • Mathematica
    f[n_] := 2^(n - 1)Integrate[(1 + x^2)^n, {x, 0, 1}] / Integrate[(1 - x^2)^n, {x, 0, 1}]; Table[ f[n], {n, 1, 24}] (* Robert G. Wilson v, Feb 27 2004 *)
    Table[2^(n-1)+Sum[2^(n-k)*Binomial[2*k-1,k], {k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 28 2012 *)
  • PARI
    x='x+O('x^66); Vec(-1/2+1/(2*(1-2*x)*sqrt(1-4*x))) \\ Joerg Arndt, May 10 2013

Formula

G.f.: -1/2 + 1/(2*(1-2*x)*sqrt(1-4*x)). - Vladeta Jovovic, Dec 14 2003
Recurrence: n*a(n) = 2*(3*n-1)*a(n-1) - 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 4^n/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
a(n) = 2^(n-1) + Sum_{k=1..n} 2^(n-k)*C(2*k-1,k). - Vaclav Kotesovec, Oct 28 2012
2*a(n) = Sum_{k=0..n} C(2k,k)*C(2(n-k),n-k)/C(n,k). - Zhi-Wei Sun, Oct 14 2019
a(n) = 2^(n-1)*JacobiP(n, 1/2, -1 - n, 3). - Peter Luschny, Jan 22 2025

Extensions

More terms from Robert G. Wilson v, Feb 27 2004