A088885 Minimum number of consecutive previous nonnegative integers to n that must be concatenated together in descending order such that n divides the concatenated term, or zero if n divides no such concatenation.
1, 2, 2, 2, 5, 2, 0, 6, 8, 10, 0, 6, 0, 8, 5, 4, 2, 8, 3, 0, 0, 10, 0, 12, 0, 0, 26, 16, 0, 20, 0, 20, 11, 2, 20, 8, 0, 0, 0, 20, 40, 20, 4, 32, 35, 46, 38, 20, 40, 0, 2, 0, 0, 26, 10, 20, 3, 0, 0, 20, 55, 0, 0, 52, 0, 32, 0, 44, 17, 20, 0, 36, 26, 0, 50, 52, 21, 38, 67, 20, 0, 0, 9, 20, 0, 4, 59
Offset: 1
Examples
a(8) = 6 because will divide the number formed by concatenating the 6 integers prior to 8 in descending order (i.e. 765432). 8 will not divide any lesser number of previous terms concatenated together beginning with 7 (i.e. 8 will not divide 7, 76, 765, 7654, or 76543). a(7) = 0 because 7 will not divide 6, 65, 654, 6543, 65432, 654321, or 6543210.
Comments