cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088919 Smallest number having exactly n representations as sum of two squares of distinct primes.

Original entry on oeis.org

1, 13, 410, 2210, 10370, 202130, 229970, 197210, 81770, 18423410, 16046810, 12625730, 21899930, 9549410, 370247930, 416392730, 579994610, 338609570, 2155919090, 601741010, 254885930, 10083683090, 4690939370, 29207671610
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 23 2003

Keywords

Comments

A088918(a(n)) = n and A088918(k) <> n for k
No terms after a(13) are smaller than 99000000. - John W. Layman, Jan 20 2004

Examples

			a(2) = 410 = 7^2+19^2 = 11^2+17^2;
a(3) = 2210 = 19^2+43^2 = 23^2+41^2 = 29^2+37^2;
a(4) = 10370 = 13^2+101^2 = 31^2+97^2 = 59^2+83^2 = 71^2+73^2;
a(5) = 202130 = 23^2+449^2 = 97^2+439^2 = 163^2+419^2 = 211^2+397^2 = 251^2+373^2;
a(6) = 229970 = 23^2+479^2 = 109^2+467^2 = 193^2+439^2 = 263^2+401^2 = 269^2+397^2 = 331^2+347^2;
a(7) = 197210 = 31^2+443^2 = 67^2+439^2 = 107^2+431^2 = 173^2+409^2 = 199^2+397^2 = 241^2+373^2 = 311^2+317^2;
a(8) = 81770 = 41^2+283^2 = 53^2+281^2 = 71^2+277^2 = 97^2+269^2 = 137^2+251^2 = 157^2+239^2 = 179^2+223^2 = 193^2+211^2.
		

Programs

  • Mathematica
    (* This program is not convenient for a large number of terms *) nMax = 14; piMax = 2500; tp = Table[{Prime[i]^2 + Prime[j]^2, i, j}, {i, 1, piMax}, {j, i+1, piMax}] // Flatten[#, 1]&; sp = tp[[All, 1]] // Tally // Sort[#, #1[[2]] > #2[[2]]& ]& // Split[#, #1[[2]] == #2[[2]]& ]&; ssp = (Sort /@ sp)[[All, 1]]; a[0] = 1; Do[a[ssp[[n, 2]]] = ssp[[n, 1]], {n, 1, Length[ssp]}]; Table[a[n], {n, 0, nMax}] (* Jean-François Alcover, Jun 19 2013 *)

Extensions

More terms from John W. Layman, Jan 20 2004
a(14)-a(23) from Donovan Johnson, May 08 2010