A088921 The number of 321- and 2143-avoiding permutations of length n.
1, 2, 5, 13, 33, 80, 185, 411, 885, 1862, 3853, 7881, 15993, 32284, 64945, 130359, 261293, 523282, 1047397, 2095781, 4192721, 8386792, 16775145, 33552083, 67106213, 134214750, 268432125, 536867201, 1073737705, 2147479092
Offset: 1
Links
- Christian Bean, Bjarki Gudmundsson and Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
- S. Billey, W. Jockusch and R. P. Stanley, Some combinatorial properties of Schubert polynomials, Journal of Algebraic Combinatorics 2(4):345-374, 1993.
- D. Callan, Pattern avoidance in circular permutations, arXiv:math/0210014 [math.CO], 2002.
- K. Eriksson and S. Linusson, Combinatorics of Fulton's essential set, Duke Mathematical Journal 85(1) (1996) 61-76.
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, arXiv:2112.03338 [math.CO], 2021.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Permutation Pattern Avoidance Library (PermPAL), Av(123,3412)
- A. Vella, Pattern avoidance in permutations: linear and cyclic orders, Electron. J. Combin. 9 (2002/03), no. 2, #R18, 43 pp.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Crossrefs
Cf. A000325.
Programs
-
Mathematica
Table[2^(n + 1) - Binomial[n + 1, 3] - 2 n - 1, {n, 30}] (* or *) Rest@ CoefficientList[Series[x (2 x^4 - 5 x^3 + 7 x^2 - 4 x + 1)/((1 - 2 x) (1 - x)^4), {x, 0, 30}], x] (* Michael De Vlieger, May 13 2017 *)
-
PARI
a(n) = 2^(n+1) - binomial(n+1, 3) - 2*n - 1 \\ Michel Marcus, Jul 11 2013
Formula
a(n) = 2^(n+1) - binomial(n+1, 3) - 2*n - 1.
G.f.: x*(2*x^4-5*x^3+7*x^2-4*x+1)/((1-2*x)*(1-x)^4). - Emeric Deutsch, Feb 22 2004
Comments