cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088931 G.f.: Sum_{n >= 1} ( x^(2^n)/ ((1+x^(2^(n-1)))*Product_{j=0..n-1} (1-x^(2^j)) ) ).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 1, 4, 3, 5, 4, 7, 6, 8, 7, 12, 11, 15, 14, 20, 19, 24, 23, 31, 30, 37, 36, 45, 44, 52, 51, 64, 63, 75, 74, 90, 89, 104, 103, 124, 123, 143, 142, 167, 166, 190, 189, 221, 220, 251, 250, 288, 287, 324, 323, 369, 368, 413, 412, 465, 464, 516, 515, 580
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2003

Keywords

Comments

This is the g.f. for the number of non-squashing partitions with a repeated part, that is, A000123(n) - A088567(n).

Examples

			x^2/((1 + x)*(1 - x)) + x^4/((1 + x^2)*(1 - x)*(1 - x^2)) + x^8/((1 + x^4)*(1 - x)*(1 - x^2)*(1 - x^4)) + ...
		

Crossrefs

Apart from initial terms, same as A088980.

Programs

  • Mathematica
    max = 65; Sum[x^(2^n)/((1+x^(2^(n-1))) Product[1-x^(2^j), {j, 0, n-1}]), {n, 1, Log[2, max] // Ceiling}] + O[x]^(max) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 05 2018 *)